Show simple item record

dc.contributor.authorBaranov, Anton
dc.contributor.authorBelov, Yurii
dc.contributor.authorKulikov, Aleksei
dc.date.accessioned2024-07-09T10:48:36Z
dc.date.available2024-07-09T10:48:36Z
dc.date.created2022-10-11T15:46:13Z
dc.date.issued2022
dc.identifier.citationIsrael Journal of Mathematics. 2022, 250, 403-427.en_US
dc.identifier.issn0021-2172
dc.identifier.urihttps://hdl.handle.net/11250/3139388
dc.description.abstractWe study hereditary completeness of systems of exponentials on an interval such that the corresponding generating function G is small outside of a lacunary sequence of intervals Ik. We show that, under some technical conditions, an exponential system is hereditarily complete if and only if the logarithmic length of the union of these intervals is infinite, i.e., k Ik dx 1+|x| = ∞.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.titleSpectral synthesis for exponentials and logarithmic lengthen_US
dc.title.alternativeSpectral synthesis for exponentials and logarithmic lengthen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber403-427en_US
dc.source.volume250en_US
dc.source.journalIsrael Journal of Mathematicsen_US
dc.identifier.doi10.1007/s11856-022-2341-3
dc.identifier.cristin2060593
dc.relation.projectNorges forskningsråd: 275113en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record