Show simple item record

dc.contributor.authorKulikov, Aleksei
dc.date.accessioned2024-07-09T10:37:35Z
dc.date.available2024-07-09T10:37:35Z
dc.date.created2022-08-15T18:09:43Z
dc.date.issued2022-07-12
dc.identifier.citationGeometric and Functional Analysis. 2022, 32 938-949.en_US
dc.identifier.issn1016-443X
dc.identifier.urihttps://hdl.handle.net/11250/3139385
dc.description.abstractWe show that certain monotone functionals on the Hardy spaces and convex functionals on the Bergman spaces are maximized at the normalized reproducing kernels among the functions of norm 1, thus proving the contractivity conjecture of Pavlović and of Brevig, Ortega-Cerdà, Seip and Zhao and the Wehrl-type entropy conjecture for the SU(1, 1) group of Lieb and Solovej, respectively.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.titleFunctionals with extrema at reproducing kernelsen_US
dc.title.alternativeFunctionals with extrema at reproducing kernelsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber938-949en_US
dc.source.volume32en_US
dc.source.journalGeometric and Functional Analysisen_US
dc.identifier.doi10.1007/s00039-022-00608-5
dc.identifier.cristin2043201
dc.relation.projectNorges forskningsråd: 275113en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record