Functionals with extrema at reproducing kernels
Journal article, Peer reviewed
Accepted version
Permanent lenke
https://hdl.handle.net/11250/3139385Utgivelsesdato
2022-07-12Metadata
Vis full innførselSamlinger
- Institutt for matematiske fag [2590]
- Publikasjoner fra CRIStin - NTNU [39503]
Sammendrag
We show that certain monotone functionals on the Hardy spaces and convex functionals on the Bergman spaces are maximized at the normalized reproducing kernels among the functions of norm 1, thus proving the contractivity conjecture of Pavlović and of Brevig, Ortega-Cerdà, Seip and Zhao and the Wehrl-type entropy conjecture for the SU(1, 1) group of Lieb and Solovej, respectively.