Vis enkel innførsel

dc.contributor.authorNesaragi, Naimahmed
dc.contributor.authorHøiseth, Lars Øivind
dc.contributor.authorQadir, Hemin Ali
dc.contributor.authorRosseland, Leiv Arne
dc.contributor.authorHalvorsen, Per Steinar
dc.contributor.authorBalasingham, Ilangko
dc.date.accessioned2024-02-05T08:33:25Z
dc.date.available2024-02-05T08:33:25Z
dc.date.created2023-08-28T14:53:36Z
dc.date.issued2023
dc.identifier.citationBiocybernetics and Biomedical Engineering (BBE). 2023, 43 (3), 551-567.en_US
dc.identifier.issn0208-5216
dc.identifier.urihttps://hdl.handle.net/11250/3115438
dc.description.abstractThe extent to which advanced waveform analysis of non-invasive physiological signals can diagnose levels of hypovolemia remains insufficiently explored. The present study explores the discriminative ability of a deep learning (DL) framework to classify levels of ongoing hypovolemia, simulated via novel dynamic lower body negative pressure (LBNP) model among healthy volunteers. We used a dynamic LBNP protocol as opposed to the traditional model, where LBNP is applied in a predictable step-wise, progressively descending manner. This dynamic LBNP version assists in circumventing the problem posed in terms of time dependency, as in real-life pre-hospital settings intravascular blood volume may fluctuate due to volume resuscitation. A supervised DL-based framework for ternary classification was realized by segmenting the underlying noninvasive signal and labeling segments with corresponding LBNP target levels. The proposed DL model with two inputs was trained with respective time–frequency representations extracted on waveform segments to classify each of them into blood volume loss: Class 1 (mild); Class 2 (moderate); or Class 3 (severe). At the outset, the latent space derived at the end of the DL model via late fusion among both inputs assists in enhanced classification performance. When evaluated in a 3-fold cross-validation setup with stratified subjects, the experimental findings demonstrated PPG to be a potential surrogate for variations in blood volume with average classification performance, AUROC: 0.8861, AUPRC: 0.8141,en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleNon-invasive waveform analysis for emergency triage via simulated hemorrhage: An experimental study using novel dynamic lower body negative pressure modelen_US
dc.title.alternativeNon-invasive waveform analysis for emergency triage via simulated hemorrhage: An experimental study using novel dynamic lower body negative pressure modelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber551-567en_US
dc.source.volume43en_US
dc.source.journalBiocybernetics and Biomedical Engineering (BBE)en_US
dc.source.issue3en_US
dc.identifier.doi10.1016/j.bbe.2023.06.002
dc.identifier.cristin2170295
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal