Show simple item record

dc.contributor.advisorBondarenko, Andrii
dc.contributor.authorØverlier, Lars Magnus
dc.date.accessioned2023-05-24T17:19:35Z
dc.date.available2023-05-24T17:19:35Z
dc.date.issued2022
dc.identifierno.ntnu:inspera:128912062:45691587
dc.identifier.urihttps://hdl.handle.net/11250/3068887
dc.description.abstractHovedresultatet for denne oppgaven er å vise at det kun finnes endelig mange tall \(n\) slik at både \(n\) og \(d(n)\) er ``antiprimtall", hvor \(d(n)\) er divisorfunksjonen. Gjennom hele oppgaven blir Bertrands postulat [4] brukt mange ganger. Dette har gjort at bevisene kan skrives så enkelt som mulig. Oppgaven skal løse det åpne problemet fra ``On-Line Encyclopedia of Integer Sequences" (OEIS): A189394 [3]. Hovedidéen for hvordan vi løser problemet kommer fra kommentaren i A189394; Når \(n\) er et stort antiprimtall, vil \(n\) inneholde mange primtall med eksponent \(1\). Det vil si at \(d(n)\) inneholder mange faktorer av \(2\). Vi estimerer faktoren \(2^{\beta_1}\) i \(d(n)\) nedenfra og ovenfra i forhold til den største primtallsfaktoren i \(d(n)\) for å få en motsigelse når \(n\) er stor nok. Vi avslutter med å finne alle antiprimtall \(n\) slik at \(d(n)\) også er et antiprimtall.
dc.description.abstractThe main result of this thesis is to show that there are only finitely many integers \(n\) such that both \(n\) and \(d(n)\) are highly composite numbers at the same time, where \(d(n)\) is the divisor function. Bertrand's postulate [4] is used many times throughout the thesis and allows us to write a proof that is as simple (and as short) as possible. This thesis is meant to solve the open problem from the ``On-Line Encyclopedia of Integer Sequences" (OEIS): A189394 [3]. The main idea for solving the problem comes from the comment in A189394; \(n\) will contain many primes with exponent 1 when \(n\) is a large highly composite number. This implies that \(d(n)\) contains a lot of factors of \(2\). We then estimate the factor \(2^{\beta_1}\) in \(d(n)\) in terms of the largest prime in \(d(n)\) from above and from below to give us a contradiction when \(n\) is large enough. We end by finding a list of all highly composite \(n\) such that \(d(n)\) is also highly composite.
dc.languageeng
dc.publisherNTNU
dc.titleHighly Composite Numbers
dc.typeMaster thesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record