Vis enkel innførsel

dc.contributor.authorShiranzaei, Mahroo
dc.contributor.authorTroncoso, Roberto
dc.contributor.authorFransson, Jonas
dc.contributor.authorBrataas, Arne
dc.contributor.authorQaiumzadeh, Alireza
dc.date.accessioned2023-03-06T14:14:43Z
dc.date.available2023-03-06T14:14:43Z
dc.date.created2022-10-10T21:41:04Z
dc.date.issued2022
dc.identifier.citationNew Journal of Physics. 2022, 24 (10), .en_US
dc.identifier.issn1367-2630
dc.identifier.urihttps://hdl.handle.net/11250/3056148
dc.description.abstractWe investigate the effect of magnon–magnon interactions on the dispersion and polarization of magnon modes in collinear antiferromagnetic (AF) insulators at finite temperatures. In two-sublattice AF systems with uniaxial easy-axis and biaxial easy-plane magneto-crystalline anisotropies, we implement a self-consistent Hartree–Fock mean-field approximation to explore the nonlinear thermal interactions. The resulting nonlinear magnon interactions separate into two-magnon intra- and interband scattering processes. Furthermore, we compute the temperature dependence of the magnon bandgap and AF resonance modes due to nonlinear magnon interactions for square and hexagonal lattices. In addition, we study the effect of magnon interactions on the polarization of magnon modes. We find that although the noninteracting eigenmodes in the uniaxial easy-axis case are circularly polarized, but in the presence of nonlinear thermal interactions the U(1) symmetry of the magnon Hamiltonian is broken. The attractive nonlinear interactions squeeze the low energy magnon modes and make them elliptical. In the biaxial easy-plane case, on the other hand, the bare eigenmodes of low energy magnons are elliptically polarized but thermal nonlinear interactions squeeze them further. Direct measurements of the predicted temperature-dependent AF resonance modes and their polarization can be used as a tool to probe the nonlinear interactions. Our findings establish a framework for exploring the effect of thermal magnon interactions in technologically important magnetic systems, such as magnetic stability of recently discovered two-dimensional magnetic materials, coherent transport of magnons, Bose–Einstein condensation of magnons, and magnonic topological insulators.en_US
dc.description.abstractThermal squeezing and nonlinear spectral shift of magnons in antiferromagnetic insulatorsen_US
dc.language.isoengen_US
dc.publisherIOP Scienceen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThermal squeezing and nonlinear spectral shift of magnons in antiferromagnetic insulatorsen_US
dc.title.alternativeThermal squeezing and nonlinear spectral shift of magnons in antiferromagnetic insulatorsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber17en_US
dc.source.volume24en_US
dc.source.journalNew Journal of Physicsen_US
dc.source.issue10en_US
dc.identifier.doi10.1088/1367-2630/ac94f0
dc.identifier.cristin2060245
dc.relation.projectEØS - Det europeiske økonomiske samarbeidsområde: 2019/34/H/ST3/00515en_US
dc.relation.projectNorges forskningsråd: 262633en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal