Vis enkel innførsel

dc.contributor.authorSmith, Torbjørn
dc.contributor.authorEgeland, Olav
dc.date.accessioned2023-01-24T09:46:03Z
dc.date.available2023-01-24T09:46:03Z
dc.date.created2022-08-22T12:29:16Z
dc.date.issued2022
dc.identifier.citationModeling, Identification and Control. 2022, 43 (2), 79-89.en_US
dc.identifier.issn0332-7353
dc.identifier.urihttps://hdl.handle.net/11250/3045723
dc.description.abstractIn this paper we develop a method for relative pose estimation for two sets of corresponding geometric primitives in 3D with a significant outlier fraction. This is done by using dynamical pose estimation as a solver in registration problems formulated with graduated non-convexity for truncated least squares (GNC-TLS). Dynamical pose estimation provides a unifying solver that can be used for point cloud registration, primitive registration, and absolute pose estimation. The solver is straightforward to implement, and it does not require specialized software for optimization. The main contribution of this paper is to show how the dynamical pose estimation method can be extended to fit into the GNC-TLS framework so that high outlier fractions can be handled. The proposed method is validated for point cloud registration, primitive registration, and absolute pose estimation. The accuracy and robustness to outliers is shown to be on the level of existing GNC-TLS methods.en_US
dc.language.isoengen_US
dc.publisherNorwegian Society of Automatic Controlen_US
dc.titleDynamical Pose Estimation with Graduated Non-Convexity for Outlier Robustnessen_US
dc.title.alternativeDynamical Pose Estimation with Graduated Non-Convexity for Outlier Robustnessen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber79-89en_US
dc.source.volume43en_US
dc.source.journalModeling, Identification and Controlen_US
dc.source.issue2en_US
dc.identifier.doi10.4173/mic.2022.2.3
dc.identifier.cristin2044928
dc.relation.projectNorges forskningsråd: 237896en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel