Vis enkel innførsel

dc.contributor.authorNikolaidis, Konstantinos
dc.contributor.authorKristiansen, Stein
dc.contributor.authorPlagemann, Thomas Peter
dc.contributor.authorGoebel, Vera Hermine
dc.contributor.authorLiestøl, Knut
dc.contributor.authorKankanhalli, Mohan
dc.contributor.authorTraaen, Gunn Marit
dc.contributor.authorØverland, Britt
dc.contributor.authorAkre, Harriet
dc.contributor.authorAakerøy, Lars
dc.contributor.authorSteinshamn, Sigurd Loe
dc.date.accessioned2022-12-08T09:40:05Z
dc.date.available2022-12-08T09:40:05Z
dc.date.created2022-08-30T11:21:21Z
dc.date.issued2022
dc.identifier.citationACM Transactions on Computing for Healthcare (HEALTH). 2022, 3 (4), 1-24.en_US
dc.identifier.issn2691-1957
dc.identifier.urihttps://hdl.handle.net/11250/3036688
dc.description.abstractSleep apnea is a common yet severely under-diagnosed sleep related disorder. Unattended sleep monitoring at home with low-cost sensors can be leveraged for condition detection, and Machine Learning offers a generalized solution for this task. However, patient characteristics, lack of sufficient training data, and other factors can imply a domain shift between training and end-user data; and reduced task performance. In this work, we address this issue with the aim to achieve personalization based on the patient’s needs. We present an unsupervised domain adaptation (UDA) solution with the constraint that labeled source data are not directly available. Instead, a classifier trained on the source data is provided. Our solution iteratively labels target data sub-regions based on classifier beliefs, and trains new classifiers from the expanding dataset. Experiments with sleep monitoring datasets and various sensors show that our solution outperforms the classifier trained on the source domain, with a kappa coefficient improvement from 0.012 to 0.242. Additionally, we apply our solution to digit classification DA between three well-established datasets, to investigate its generalizability, and allow for related work comparisons. Even without direct access to the source data, it outperforms several well-established UDA methods in these datasets.en_US
dc.description.abstractMy Health Sensor, my Classifier – Adapting a Trained Classifier to Unlabeled End-User Dataen_US
dc.language.isoengen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMy Health Sensor, my Classifier – Adapting a Trained Classifier to Unlabeled End-User Dataen_US
dc.title.alternativeMy Health Sensor, my Classifier – Adapting a Trained Classifier to Unlabeled End-User Dataen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1-24en_US
dc.source.volume3en_US
dc.source.journalACM Transactions on Computing for Healthcare (HEALTH)en_US
dc.source.issue4en_US
dc.identifier.doi10.1145/3559767
dc.identifier.cristin2047118
dc.relation.projectNorges forskningsråd: 250239en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal