dc.contributor.author | Bergh, Petter Andreas | |
dc.contributor.author | Jorgensen, David A. | |
dc.contributor.author | Moore, W. Frank | |
dc.date.accessioned | 2022-09-16T12:38:33Z | |
dc.date.available | 2022-09-16T12:38:33Z | |
dc.date.created | 2021-11-26T11:01:03Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Applied Categorical Structures. 2021, 29 (4), 729-745. | en_US |
dc.identifier.issn | 0927-2852 | |
dc.identifier.uri | https://hdl.handle.net/11250/3018488 | |
dc.description.abstract | Let Q→R be a surjective homomorphism of Noetherian rings such that Q is Gorenstein and R as a Q-bimodule admits a finite resolution by modules which are projective on both sides. We define an adjoint pair of functors between the homotopy category of totally acyclic R-complexes and that of Q-complexes. This adjoint pair is analogous to the classical adjoint pair of functors between the module categories of R and Q. As a consequence, we obtain a precise notion of approximations of totally acyclic R-complexes by totally acyclic Q-complexes | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.title | Totally Acyclic Approximations | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | acceptedVersion | en_US |
dc.source.pagenumber | 729-745 | en_US |
dc.source.volume | 29 | en_US |
dc.source.journal | Applied Categorical Structures | en_US |
dc.source.issue | 4 | en_US |
dc.identifier.doi | 10.1007/s10485-021-09633-1 | |
dc.identifier.cristin | 1959625 | |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |