Vis enkel innførsel

dc.contributor.authorBergh, Petter Andreas
dc.contributor.authorJorgensen, David A.
dc.contributor.authorMoore, W. Frank
dc.date.accessioned2022-09-16T12:38:33Z
dc.date.available2022-09-16T12:38:33Z
dc.date.created2021-11-26T11:01:03Z
dc.date.issued2021
dc.identifier.citationApplied Categorical Structures. 2021, 29 (4), 729-745.en_US
dc.identifier.issn0927-2852
dc.identifier.urihttps://hdl.handle.net/11250/3018488
dc.description.abstractLet Q→R be a surjective homomorphism of Noetherian rings such that Q is Gorenstein and R as a Q-bimodule admits a finite resolution by modules which are projective on both sides. We define an adjoint pair of functors between the homotopy category of totally acyclic R-complexes and that of Q-complexes. This adjoint pair is analogous to the classical adjoint pair of functors between the module categories of R and Q. As a consequence, we obtain a precise notion of approximations of totally acyclic R-complexes by totally acyclic Q-complexesen_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.titleTotally Acyclic Approximationsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber729-745en_US
dc.source.volume29en_US
dc.source.journalApplied Categorical Structuresen_US
dc.source.issue4en_US
dc.identifier.doi10.1007/s10485-021-09633-1
dc.identifier.cristin1959625
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel