• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LS-CAT: A Large-Scale CUDA AutoTuning Dataset

Lars, Bjertnes; Tørring, Jacob; Elster, Anne C.
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
paper_25.pdf (1.690Mb)
URI
https://hdl.handle.net/11250/3003390
Date
2021
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [5022]
  • Publikasjoner fra CRIStin - NTNU [26728]
Original version
Applied Artificial Intelligence. 2021, 67-72.   10.1109/ICAPAI49758.2021.9462050
Abstract
The effectiveness of Machine Learning (ML) methods depend on access to large suitable datasets. In this article, we present how we build the LS-CAT (Large-Scale CUDA AutoTuning) dataset sourced from GitHub for the purpose of training NLP-based ML models. Our dataset includes 19 683 CUDA kernels focused on linear algebra. In addition to the CUDA codes, our LS-CAT dataset contains 5 028 536 associated runtimes, with different combinations of kernels, block sizes and matrix sizes. The runtime are GPU benchmarks on both Nvidia GTX 980 and Nvidia T4 systems. This information creates a foundation upon which NLP-based models can find correlations between source-code features and optimal choice of thread block sizes. There are several results that can be drawn out of our LS-CAT database. E.g., our experimental results show that an optimal choice in thread block size can gain an average of 6% for the average case. We thus also analyze how much performance increase can be achieved in general, finding that in 10% of the cases more than 20% performance increase can be achieved by using the optimal block. A description of current and future work is also included.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Journal
Applied Artificial Intelligence

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit