Vis enkel innførsel

dc.contributor.authorØstvik, Andreas
dc.contributor.authorSalte, Ivar Mjåland
dc.contributor.authorSmistad, Erik
dc.contributor.authorNguyen, Thuy Mi
dc.contributor.authorMelichova, Daniela
dc.contributor.authorBrunvand, Harald
dc.contributor.authorHaugaa, Kristina
dc.contributor.authorEdvardsen, Thor
dc.contributor.authorGrenne, Bjørnar
dc.contributor.authorLøvstakken, Lasse
dc.date.accessioned2022-04-19T07:53:13Z
dc.date.available2022-04-19T07:53:13Z
dc.date.created2021-06-19T09:44:22Z
dc.date.issued2021
dc.identifier.citationIEEE Transactions on Medical Imaging. 2021, 40 (5), 1340-1351.en_US
dc.identifier.issn0278-0062
dc.identifier.urihttps://hdl.handle.net/11250/2991227
dc.description.abstractDeformation imaging in echocardiography has been shown to have better diagnostic and prognostic value than conventional anatomical measures such as ejection fraction. However, despite clinical availability and demonstrated efficacy, everyday clinical use remains limited at many hospitals. The reasons are complex, but practical robustness has been questioned, and a large inter-vendor variability has been demonstrated. In this work, we propose a novel deep learning based framework for motion estimation in echocardiography, and use this to fully automate myocardial function imaging. A motion estimator was developed based on a PWC-Net architecture, which achieved an average end point error of (0.06±0.04) mm per frame using simulated data from an open access database, on par or better compared to previously reported state of the art. We further demonstrate unique adaptability to image artifacts such as signal dropouts, made possible using trained models that incorporate relevant image augmentations. Further, a fully automatic pipeline consisting of cardiac view classification, event detection, myocardial segmentation and motion estimation was developed and used to estimate left ventricular longitudinal strain in vivo. The method showed promise by achieving a mean deviation of (-0.7±1.6)% compared to a semi-automatic commercial solution for N=30 patients with relevant disease, within the expected limits of agreement. We thus believe that learning-based motion estimation can facilitate extended use of strain imaging in clinical practice.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/abstract/document/9335592
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMyocardial Function Imaging in Echocardiography Using Deep Learningen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1340-1351en_US
dc.source.volume40en_US
dc.source.journalIEEE Transactions on Medical Imagingen_US
dc.source.issue5en_US
dc.identifier.doi10.1109/TMI.2021.3054566
dc.identifier.cristin1916910
dc.relation.projectNorges forskningsråd: 237887en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal