• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Effective Parameters in Cyclic Behavior of Reinforced Masonry Walls with Shotcrete Using Artificial Neural Networks

Hajmohammadian Baghban, Mohammad; Hashemi, Seyed Amirhossein; Hashemi, Elahe Sadat; Aghaei, M.H
Peer reviewed, Journal article
Published version
Åpne
Baghban (Låst)
Permanent lenke
https://hdl.handle.net/11250/2990162
Utgivelsesdato
2022
Metadata
Vis full innførsel
Samlinger
  • Institutt for vareproduksjon og byggteknikk [706]
  • Publikasjoner fra CRIStin - NTNU [26671]
Originalversjon
Solid State Phenomena. 2022, 85-92.   10.4028/p-qx75o7
Sammendrag
In Masonry buildings, walls are the main structural elements resistant to lateral loads. Reinforcing masonry walls by shotcreting one- or two-sides is one of the most common reinforcement methods. Considering the economic losses and casualties caused by damage to these elements in previous earthquakes, it is necessary to investigate the seismic behavior of these walls. The existing data can train artificial neural networks, and the behaviors could be generalized for future cases. In this study, the prediction of cyclic behavior parameters of reinforced masonry walls with one- and two-way shotcrete is investigated using different artificial neural network methods. Input parameters of the neural network include length, thickness, height, mortar shear strength, mortar compressive strength, mesh type, spring dimensions, rebar diameter, average thickness of shotcrete, and concrete compressive strength. Output parameters were the relative displacement of yield, relative displacement corresponding to maximum resistance, final relative displacement, yield strength, displacement resistance corresponding to maximum resistance, ultimate resistance, and initial stiffness. The results showed that the feed-forward back-propagation neural network could accurately predict the examined output parameters compared to other models, which can be considered as an alternative to some time-consuming and costly laboratory and analytical investigations.
Utgiver
Trans Tech Publications
Tidsskrift
Solid State Phenomena

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit