• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A deep reinforcement learning based approach towards generating human walking behavior with a neuromuscular model

Sadanandan Anand, Akhil; Zhao, Guoping; Roth, Hubert; Seyfarth, Andre
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Anand (1.716Mb)
Permanent lenke
https://hdl.handle.net/11250/2978986
Utgivelsesdato
2019
Metadata
Vis full innførsel
Samlinger
  • Institutt for teknisk kybernetikk [2842]
  • Publikasjoner fra CRIStin - NTNU [26648]
Originalversjon
10.1109/Humanoids43949.2019.9035034
Sammendrag
A gait model capable of generating human-like walking behavior at both the kinematic and the muscular level can be a very useful framework for developing control schemes for humanoids and wearable robots such as exoskeletons and prostheses. In this work we demonstrated the feasibility of using deep reinforcement learning based approach for neuromuscular gait modelling. A lower limb gait model consists of seven segments, fourteen degrees of freedom, and twenty two Hill-type muscles was built to capture human leg dynamics and the characteristics of muscle properties. We implemented the proximal policy optimization algorithm to learn the sensory-motor mappings (control policy) and generate human-like walking behavior for the model. Human motion capture data, muscle activation patterns and metabolic cost estimation were included in the reward function for training. The results show that the model can closely reproduce the human kinematics and ground reaction forces during walking. It is capable of generating human walking behavior in a speed range from 0.6 m/s to 1.2 m/s. It is also able to withstand unexpected hip torque perturbations during walking. We further explored the advantages of using the neuromuscular based model over the ideal joint torque based model. We observed that the neuromuscular model is more sample efficient compared to the torque model.
Utgiver
Institute of Electrical and Electronics Engineers (IEEE)
Tidsskrift
IEEE-RAS International Conference on Humanoid Robots
Opphavsrett
© IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit