Vis enkel innførsel

dc.contributor.authorLiljeback, Pål
dc.contributor.authorPettersen, Kristin Ytterstad
dc.contributor.authorStavdahl, Øyvind
dc.contributor.authorGravdahl, Jan Tommy
dc.date.accessioned2015-05-09T10:56:48Z
dc.date.accessioned2015-07-06T12:53:09Z
dc.date.available2015-05-09T10:56:48Z
dc.date.available2015-07-06T12:53:09Z
dc.date.issued2011
dc.identifier.citationIEEE Transactions on Automatic Control 2011, 56(6):1365-1380nb_NO
dc.identifier.issn0018-9286
dc.identifier.urihttp://hdl.handle.net/11250/286583
dc.description- Author's postprintnb_NO
dc.description.abstractThis paper contributes to the understanding of snake robot locomotion by employing nonlinear system analysis tools for investigating fundamental properties of snake robot dynamics. The paper has five contributions: 1) a partially feedback linearized model of a planar snake robot influenced by viscous ground friction is developed. 2) A stabilizability analysis is presented proving that any asymptotically stabilizing control law for a planar snake robot to an equilibrium point must be time-varying. 3) A controllability analysis is presented proving that planar snake robots are not controllable when the viscous ground friction is isotropic, but that a snake robot becomes strongly accessible when the viscous ground friction is anisotropic. The analysis also shows that the snake robot does not satisfy sufficient conditions for small-time local controllability (STLC). 4) An analysis of snake locomotion is presented that easily explains how anisotropic viscous ground friction enables snake robots to locomote forward on a planar surface. The explanation is based on a simple mapping from link velocities normal to the direction of motion into propulsive forces in the direction of motion. 5) A controller for straight line path following control of snake robots is proposed and a Poincaré map is investigated to prove that the resulting state variables of the snake robot, except for the position in the forward direction, trace out an exponentially stable periodic orbit.nb_NO
dc.language.isoengnb_NO
dc.publisherIEEEnb_NO
dc.rights(c) 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
dc.titleControllability and Stability Analysis of Planar Snake Robot Locomotionnb_NO
dc.typeJournal articlenb_NO
dc.typePeer revieweden_GB
dc.date.updated2015-05-09T10:56:48Z
dc.rights.holderIEEE
dc.source.pagenumber1365-1380nb_NO
dc.source.volume56nb_NO
dc.source.journalIEEE Transactions on Automatic Controlnb_NO
dc.source.issue6nb_NO
dc.identifier.doi10.1109/TAC.2010.2088830
dc.identifier.cristin838282


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel