Vis enkel innførsel

dc.contributor.authorCerca, José
dc.contributor.authorArmstrong, Ellie E.
dc.contributor.authorVizueta, Joel
dc.contributor.authorFernández, Rosa
dc.contributor.authorDimitrov, Dimitar Stefanov
dc.contributor.authorPetersen, Bent
dc.contributor.authorProst, Stefan
dc.contributor.authorRozas, Julio
dc.contributor.authorPetrov, Dmitri
dc.contributor.authorGillespie, Rosemary G.
dc.date.accessioned2022-01-19T12:41:33Z
dc.date.available2022-01-19T12:41:33Z
dc.date.created2022-01-17T14:26:11Z
dc.date.issued2021
dc.identifier.citationGenome Biology and Evolution. 2021, 13 (12), .en_US
dc.identifier.issn1759-6653
dc.identifier.urihttps://hdl.handle.net/11250/2838267
dc.description.abstractSpiders (Araneae) have a diverse spectrum of morphologies, behaviors, and physiologies. Attempts to understand the genomic-basis of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of ∼2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest that the previously reported and vast genome size variation in spiders is linked to the different representation and number of transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata (∼450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable element expansion.en_US
dc.language.isoengen_US
dc.publisherOxford University Press on behalf of the Society for Molecular Biology and Evolution.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe Tetragnatha kauaiensis Genome Sheds Light on the Origins of Genomic Novelty in Spidersen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© The Author(s) 2021.en_US
dc.source.volume13en_US
dc.source.journalGenome Biology and Evolution (GBE)en_US
dc.source.issue12en_US
dc.identifier.doi10.1093/gbe/evab262
dc.identifier.cristin1982700
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal