Vis enkel innførsel

dc.contributor.authorUlvestad, Asbjørn
dc.contributor.authorSkare, Marte Orderud
dc.contributor.authorFoss, Carl Erik Lie
dc.contributor.authorKrogsæter, Henrik
dc.contributor.authorReichstein, Jakob
dc.contributor.authorPreston, Thomas J.
dc.contributor.authorMæhlen, Jan Petter
dc.contributor.authorAndersen, Hanne Flåten
dc.contributor.authorKoposov, Alexey
dc.date.accessioned2021-11-03T13:07:46Z
dc.date.available2021-11-03T13:07:46Z
dc.date.created2021-10-06T09:32:48Z
dc.date.issued2021
dc.identifier.citationACS Nano. 2021, 15 (10), 16777-16787.en_US
dc.identifier.issn1936-0851
dc.identifier.urihttps://hdl.handle.net/11250/2827638
dc.description.abstractIn modern Li-based batteries, alloying anode materials have the potential to drastically improve the volumetric and specific energy storage capacity. For the past decade silicon has been viewed as a “Holy Grail” among these materials; however, severe stability issues limit its potential. Herein, we present amorphous substoichiometric silicon nitride (SiNx) as a convertible anode material, which allows overcoming the stability challenges associated with common alloying materials. Such material can be synthesized in a form of nanoparticles with seamlessly tunable chemical composition and particle size and, therefore, be used for the preparation of anodes for Li-based batteries directly through conventional slurry processing. Such SiNx materials were found to be capable of delivering high capacity that is controlled by the initial chemical composition of the nanoparticles. They exhibit an exceptional cycling stability, largely maintaining structural integrity of the nanoparticles and the complete electrodes, thus delivering stable electrochemical performance over the course of 1000 charge/discharge cycles. Such stability is achieved through the in situ conversion reaction, which was herein unambiguously confirmed by pair distribution function analysis of cycled SiNx nanoparticles revealing that active silicon domains and a stabilizing Li2SiN2 phase are formed in situ during the initial lithiation.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleStoichiometry-Controlled Reversible Lithiation Capacity in Nanostructured Silicon Nitrides Enabled by in Situ Conversion Reactionen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber16777-16787en_US
dc.source.volume15en_US
dc.source.journalACS Nanoen_US
dc.source.issue10en_US
dc.identifier.doi10.1021/acsnano.1c06927
dc.identifier.cristin1943652
dc.relation.projectNorges forskningsråd: 257653en_US
dc.relation.projectNorges forskningsråd: 280885en_US
dc.relation.projectNorges forskningsråd: 280985en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal