Vis enkel innførsel

dc.contributor.authorChadney, Oscar Michael Thornton
dc.contributor.authorBlankvoort, Stefan
dc.contributor.authorGrimstvedt, Joachim Schweder
dc.contributor.authorUtz, Annika
dc.contributor.authorKentros, Clifford
dc.date.accessioned2021-10-27T12:00:04Z
dc.date.available2021-10-27T12:00:04Z
dc.date.created2021-07-26T10:51:11Z
dc.date.issued2021
dc.identifier.issn0165-0270
dc.identifier.urihttps://hdl.handle.net/11250/2826015
dc.description.abstractNeural circuits are composed of multitudes of elaborately interconnected cell types. Understanding neural circuit function requires not only cell-specific knowledge of connectivity, but the ability to record and manipulate distinct cell types independently. Recent advances in viral vectors promise the requisite specificity to perform true “circuit-breaking” experiments. However, such new avenues of multiplexed, cell-specific investigation raise new technical issues: one must ensure that both the viral vectors and their transgene payloads do not overlap with each other in both an anatomical and a functional sense. This review describes benefits and issues regarding the use of viral vectors to analyse the function of neural circuits and provides a resource for the design and implementation of such multiplexing experiments.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.titleMultiplexing viral approaches to the study of the neuronal circuitsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe published version of the article will not be available due to copyright restrictions by Elsevieren_US
dc.source.volume357en_US
dc.source.journalJournal of Neuroscience Methodsen_US
dc.identifier.doihttps://doi.org/10.1016/j.jneumeth.2021.109142
dc.identifier.cristin1922628
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel