Show simple item record

dc.contributor.advisorBergna-Diaz, Gilbert
dc.contributor.authorFaraasen, Hans Anders
dc.date.accessioned2021-09-15T17:12:54Z
dc.date.available2021-09-15T17:12:54Z
dc.date.issued2020
dc.identifierno.ntnu:inspera:54192979:34535284
dc.identifier.urihttps://hdl.handle.net/11250/2778201
dc.description.abstractOffshore vindkraft spås å ha en eksponentiell vekst de neste tiårene da verden trenger kostnadseffektiv og fornybar energi. Den modulære HVDC (ModHVDC) generatoren er et nytt design for å oppnå 100 kV HVDC i ett omformingssteg uten transformatorer. Ved å segmentere statoren til en permanentmagnetgenerator blir hvert statorsegment å regne som en trefase generator. Ved å koble segmentene til seriekoblede kraftomformere muliggjøres HVDC i ett omformingssteg. Dermed tar teknologien sikte på å utvide bruken av HVDC i offshore vindkraft. I oppgaven har teknologien vært konseptualisert i en 10MW vindturbin. Kraftomformeren(e) har vært fokusområdet i vindturbinsystemet. To forskjellige omformeres ytelse i applikasjonen har vært sammenlignet, tap tilknyttet halvlederne i omformerne og kontrollmetoder av omformerne har vært studert. De neste tre avsnittene oppsummerer metode og resultat tilhørende hvert punkt. Ytelse ble studert ved å sammenligne en “three-level neutral point clamped” (3L-NPC) omformer og en “two-level voltage source converter” (2L-VSC). Ytelse ble målt ved å studere tilstandsvariablene i systemet, kurvene til spenning og strøm og kraftkvaliteten i tillegg til tap og effektivitet for begge omformere for en rekke forskjellige vindhastigheter. Dette ble gjennomført i simuleringsprogrammet Simulink hvor tilhørende oppsett og resultater gis i kapittel 5. Resultatene viste at systemet var stabilt for begge omformerne. 3L-NPC-omformeren viste bedre kraftkvalitet, redusert variasjon i DC-link strøm, lavere tap og høyere effektivitet sammenlignet med 2L-VSC-omformeren. Basert på resultatene ble det konkludert med at 3L-NPC-omformeren utkonkurrerer sin motpart og det er anbefalt at førstnevnte omformer brukes i videre studier eller praktiske forsøk i istedenfor sistnevnte. Tap i 3.3, 4.5 og 6.5 kV industrielt tilgjengelige IGBT moduler ble beregnet i kapittel 4 ved bruk av analytiske beregningsmodeller. Formålet var å studere og sammenligne forskjellene mellom °a bruke flere 3.3 kV moduler, få 6.5 kV moduler eller et kompromiss ved å bruke 4.5 kV moduler. Resultatene viste at 3.3 kV modulen hadde de laveste tapene. Alle modulene ble evaluert i begge omformerne og resultatene viste at 3L-NPC-omformeren var mer effektiv enn sin motpart i alle tilfeller, hvilket simuleringsresultat i kapittel 5 støtter. Kontroll av DC-busspenningene med tilhørende utfordringer og løsninger ble presentert i kapittel 3. En casestudie med åtte generator/omformer moduler med normalfordelte parametere ble brukt som utgangspunkt for å studere kontrollmetodene. Resultatene viser at man enten må akseptere overbelastning av moduler eller senke effekten fra noen moduler for å ha identiske DC-busspenninger. Overbelastning medførte at en modul ble belastet med 0.048 pu (8 A) over nominell verdi, mens kraftreduksjonen var på 4.5 %, hvilket kan tilsvare 1.3 GWh/år for en 10 MW offshore vindturbin.
dc.description.abstractOffshore wind power is projected to have an exponential growth in the coming decades as the world needs affordable low-carbon and renewable energy resources. The modular High Voltage Direct Current (ModHVDC) generator is a new design for generator and electrical drive train, that proposes a transformer-less concept with a single conversion step to achieve 100 kV HVDC potential. By segmenting the stator of a permanent magnet synchronous generator, the machine forms multiple equivalent three-phase generators. Connecting these stator segments to series-connected power converters enables HVDC in a single conversion step. Thus, this technology aims at extending the use of HVDC in offshore wind power grids. This master thesis emphasizes the power electronic converters related to the ModHVDC machine. Special technical challenges arise due to the stator segmentation and multiple power converters. Adequate control methods are required for high performance and reliable operation. Additionally, the 100 kV DC-potential necessitates dedicated converters for safe and efficient operation. Research for energy-efficient and high performing power electronic converters were the focus for this thesis, where power converter performance, semiconductor losses and DC-bus voltage control methods was studied. The intention was to use the results for future lab-scale realization of the ModHVDC generator to increase the technical readiness level of the technology. A comparison between a three-level neutral point clamp converter (3L-NPC) and a conventional two-level voltage source converter (2L-VSC) was carried out in terms of their performance. More precisely, performance was measured by studying the state variables behaviour, voltage and current waveform, power quality, losses and efficiency for both converters when the wind turbine was subjected to various wind speeds. This was conducted in Simulink, where simulation setup, results and a summary are presented in chapter 5. The results showed that even though a stable operation was achieved with both converters, the 3L-NPC showed better power quality, reduced DC-link current ripple, lower losses and higher efficiency than the 2L-VSC. Based on the results, the 3L-NPC converter was concluded to be a suitable converter for use and future research for the ModHVDC generator. Semiconductor losses with a 3.3, 4.5 and 6.5 kV industrially available IGBT module were calculated in chapter 4 by using analytical calculation loss models. The purpose of the study was to compare benefits of using multiple lower voltage rated modules or fewer higher voltage rated modules with both converters. The results showed that the 3.3 kV IGBT module had the lowest losses. Additionally, the calculation supported the simulation results as the 3L-NPC converter was more efficient than the 2L-VSC. DC-bus voltage control methods were studied in chapter 3 and concerns balancing the DC-bus voltages of all converters. Both the challenge and potential solutions for control strategies were presented. Eighth generator/converter modules were assigned with normal distributed parameters for simulating a natural voltage variation between modules in a full-scale application. The results show that the alternatives for having identical DC-bus voltages are either accepting overloading of some modules or lower the power output of each module to the module with lowest output power. For this specific case, the former led to a current overloading of 0.048 pu (8 A), while the latter resulted in a power reduction of 4.5 %, which could accumulate to 1.3 GWh/year for a 10 MW offshore wind turbine.
dc.language
dc.publisherNTNU
dc.titlePower Electronic Converters for Efficient Operation of the Modular HVDC Generator for Offshore Wind Power
dc.typeMaster thesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record