Show simple item record

dc.contributor.authorKulyakhtin, Anton
dc.date.accessioned2015-02-23T09:47:10Z
dc.date.available2015-02-23T09:47:10Z
dc.date.issued2014
dc.identifier.isbn978-82-326-0588-0 (printed ver.)
dc.identifier.isbn978-82-326-0589-7 (electronic ver.)
dc.identifier.issn1503-8181
dc.identifier.urihttp://hdl.handle.net/11250/277036
dc.description.abstractOil and gas activities in the cold seas are endangered by icing. Icing may occur when water spray or moisture is deposited on a vessel or offshore structure above sea level and the air temperatures is below the freezing temperature of water. Ice accumulation can block rescue equipment and doors, and clog ventilation systems, which may increase the risk of explosion as result of volatile gas accumulation. Icing can be caused by supercooled fog, freezing rain, falling snow and freezing sea spray. The freezing sea spray caused 80 – 90% of all offshore icing incidents and is the focus of this study. To take precautions against icing, it is important to understand the physics of icing and to model it. The rate of ice accretion is mainly defined by the spray flux and heat transfer, and both must be accurately predicted. Existing icing models, e.g., ICEMOD and RIGICE04, simplify the structure, subdividing it into cylindrical and flat components. In these models, airflow around a component is assumed to be unaffected by other parts of the structure, and the heat transfer is approximated using empirical relations. In reality, however, the airflow field is complex. Upwind components can create wind shadow regions or regions of accelerated flow in front of downwind components; this changes both the spray flux and the heat transfer, thus making ICEMOD and RIGICE04 inadequate. A research subject of this PhD study was the heat transfer and spray flow around a structure in a real airflow. The full-scale measurements in the literature are limited and it is expensive to perform them. Therefore, for a preliminary answer the question was addressed using computational fluid dynamics (CFD), which is capable of predicting the spray flow and heat transfer around a structure with any shape; however, the accuracy of CFD is uncertain. Existing models of sea spray icing, e.g., ICEMOD and RIGICE04, neglect heat flux into the accreted ice and assume that air cooling is directly spent to freeze the water film on the ice surface. This assumption is good for steady ice growth. However, it is also used in modelling icing caused by periodic sea spray. This study proves numerically and experimentally that the heat flux into the accreted ice generated by freezing must not be neglected. The main contributions of this work are as follows: The study develops the marine icing model, MARICE, which uses CFD to calculate spray flux and heat transfer, and models water film motion on any arbitrary surface. · The study shows that Reynolds-averaged Navier-Stokes (RANS) models should be used with care in icing simulations: the collision efficiency is well predicted upstream flow separation point by any RANS turbulence model; however, the wake and separation of the flow is modelled poorly. · The study develops and validates a new model of ice growth caused by periodic sea spray, which accounts for the heat conduction inside the accreted ice.nb_NO
dc.language.isoengnb_NO
dc.publisherNTNUnb_NO
dc.relation.ispartofseriesDoctoral thesis at NTNU;2014:338
dc.relation.haspartPaper 1: Kulyakhtin A., Løset S., 2011. Sea spray icing: In-cloud evaporation. Semianalytical and numerical investigation. International Workshop on Atmospheric Icing (IWAIS2011), Chong-Chin, China
dc.relation.haspartPaper 2: Kulyakhtin, A., Kollar, L, Løset, S., Farzaneh, M., 2012. Numerical simulation of 3D spray flow in a wind tunnel with application of O'Rourke's interaction algorithm and its validation. Proceedings of the 21st IAHR International Symposium on Ice (IAHR2012).
dc.relation.haspartPaper 3: Kulyakhtin, A., Shipilova, O., Libby, B. and Løset, S., 2012. Full-scale 3D CFD simulation of spray impingement on a vessel produced by ship-wave interaction. Proceedings of the 21st IAHR International Symposium on Ice (IAHR2012).
dc.relation.haspartPaper 4: Kulyakhtin A., Kulyakhtin S., Løset S. Measurements of Thermodynamic Properties of Ice Created by Frozen Sea Spray, 2013. The 23rd International Ocean and Polar Engineering Conference (ISOPE), Anchorage, USA, June 30 - July 5 2013.
dc.relation.haspartPaper 5: Kulyakhtin, A., Shipilova, O. and Muskulus, M., 2014. Numerical simulation of droplet impingement and flow around a cylinder using RANS and LES models. Journal of Fluid and Structures, Vol. 48, pp. 280-294. <a href="http://dx.doi.org/10.1016/j.jfluidstructs.2014.03.007" target="_blank"> http://dx.doi.org/10.1016/j.jfluidstructs.2014.03.007</a> The article in is reprinted with kind permission from Elsevier, www.sciencedirect.com
dc.relation.haspartPaper 6: Kulyakhtin, A., Tsarau, A., 2014. A time-dependent model of marine icing with application of computational fluid dynamics, Journal of Cold Regions Science and Technology, Vol. 104-105, pp. 33-44. <a href="http://dx.doi.org/10.1016/j.coldregions.2014.05.001" target="_blank"> http://dx.doi.org/10.1016/j.coldregions.2014.05.001</a> The article in is reprinted with kind permission from Elsevier, www.sciencedirect.com
dc.relation.haspartPaper 7: Kulyakhtin, A., Kulyakhtin, S. and Løset, S, 2014. The role of the ice heat conduction in the ice growth caused by periodic sea spray. Journal of Cold Regions Science and Technology (submitted).
dc.titleNumerical Modelling and Experiments on Sea Spray Icingnb_NO
dc.typeDoctoral thesisnb_NO
dc.subject.nsiVDP::Technology: 500::Building technology: 530::Building, construction and transport technology: 532nb_NO


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record