Vis enkel innførsel

dc.contributor.advisorTranell, Gabriella
dc.contributor.advisorJakobsen, Hugo Atle
dc.contributor.advisorOlsen, Jan Erik Øvrebø
dc.contributor.authorBjørnstad, Erlend Lunnan
dc.date.accessioned2021-08-17T10:23:49Z
dc.date.available2021-08-17T10:23:49Z
dc.date.issued2021
dc.identifier.isbn978-82-326-6676-8
dc.identifier.issn2703-8084
dc.identifier.urihttps://hdl.handle.net/11250/2768770
dc.description.abstractEnglish summary Metallurgical grade silicon (MG-Si) is used as an alloying agent, raw material, or as a precursor compound, in the production of aluminum alloys, silicones, photovoltaics, and electronics. Access to clean and affordable energy and deep-water ports, have been competitive advantages for the Norwegian metallurgical industry, with Norway hosting several of the world’s leading producers of metallurgical grade silicon. During the production of MG-Si the liquid alloy needs to undergo refining, where the amount of impurities in the alloy are reduced to meet customer specification. Of the different refining methods available, oxidative ladle refining (OLR) is the most commonly used, primarily to reduce the amount of Ca and Al impurities in the alloy. OLR consists of tapping the liquid alloy into a refining ladle, while oxygen-enhanced air is purged through a bottom mounted porous plug. When the alloy comes into contact with oxygen in the gas, the silicon and impurities form a SiO2-CaO-Al2O3 slag, where the slag and alloy are immiscible, thus allowing the alloy to be separated from the slag. This thesis investigates the mass transfer of Ca and Al in this process. The first part of the thesis presents a theoretical framework, describing the nucleation of SiO2-CaO-Al2O3 slag on the bubbles created by the purge gas, using classical macroscale thermodynamics. Classical macroscale thermodynamics requires the slag nucleus to exhibit a "well defined" surface, which cannot generally be assumed at nanoscale. The work describes how liquid silica should retain its "well defined" surface structure, even while the slag nucleus is small. Silica is highly surface active in SiO2-CaO-Al2O3 slags, which the work uses to extend the "well defined" surface structure of silica to SiO2-CaO-Al2O3slags as a whole, as long as its silica content is high. Experiments were also conducted which confirm the surface active nature of silica in the SiO2-CaO-Al2O3 system. The framework also shows the impact of calcia and alumina on the interfacial properties of the slag. The second part of the thesis concerns itself with the macroscale mass transfer of Ca and Al. Laboratory experiments were conducted for the purpose of understanding the mass transfer kinetics of Ca and Al from a synthetic SiO2-CaO-Al2O3 slag to pure silicon. Laboratory-scale experiments were also conducted to evaluate the refining path Ca and Al, simulating industrial OLR of MG-Si. The results suggest that OLR of MG-Si occurs in three primary steps. Initially, surface oxidation, due to an initial high contact area between the alloy and latent atmospheric oxygen during tapping, is the most prominent refining effect, resulting in a high calcia SiO2-CaO-Al2O3 slag. When the ladle reaches a critical fill height, slag formation by gas purging becomes the prominent refining effect, due to the increased residence time of a bubble. This results in the subsequent formation of new SiO2-CaO-Al2O3 slag dominating the refining process. Finally, a critical amount of slag has been formed by gas purging and amassed in the ladle. An equilibrium between the bulk SiO2-CaO-Al2O3 slag and alloy is approached by mass transfer of Ca and Al, both to and from the slag. The final part of the thesis consists of a model for locating slag contaminated samples in industrial measurement sets.en_US
dc.description.abstractNorsk sammendrag Produksjonen av aluminiumslegeringer, silikon, fotovoltaiske produkter som solceller, og elektronikk bruker alle metallurgisk silisium (MG-Si) som råmateriale eller legeringstilsats. Dette gjør MG-Si til et viktig materiale for mange ulike industrier, hvor flere verdensledende produsenter av MG-Si og relatert prosessteknologi holder til i Norge. Når en produserer MG-Si må det flytende metallet igjennom et eller flere raffineringssteg. Dette er nødvendig for å senke mengden urenheter i legeringen. God kontroll over disse urenhetene er kritisk siden produktet skal brukes videre i så mange ulike prosesser. Den vanligste metoden for å raffinere MG-Si er ved oksidativ øseraffinering (OLR). I OLR så tappes den uraffinerte silisiumslegeringen fra smelteovnen over i ei øse som kan inneholde opptil 7 tonn flytende metall når full. Under tappinga pumpes oksygenrik luft inn fra bunnen av øsa. Oksygenet i gassboblene reagerer så med silisiumet og urenhetene kalsium og aluminium til en SiO2-CaO-Al2O3 slagg. Mesteparten av slaggen setter seg på veggene og bunnen av øsa. Ved så å helle forsiktig kan slaggen og det renskede silisiumet separeres. Avhandlingen utforsker hvordan kalsium og aluminium oppfører seg i OLR for å forbedre dagens industrielle styringsprosesser. Første delen av arbeidet omhandler en teoretisk modell om hvordan slaggen dannes på nanonivå. Denne er utviklet for å forbedre de modellene industrien allerede bruker. Resten av arbeidet består av eksperimenter og modeller som utforsker masseoverføringen av kalsium og aluminium i større skala. Til sammen gir de et nytt bilde av hele raffineringsforløpet som stemmer godt med målinger fra industrien, hvor dette oversiktsbildet gir industrien nye muligheter til å forbedre og effektivisere sin interne prosesskontroll.en_US
dc.language.isoengen_US
dc.publisherNTNUen_US
dc.relation.ispartofseriesDoctoral theses at NTNU;2021:277
dc.relation.haspartPaper 1: Bjørnstad, Erlend Lunnan; Tranell, Gabriella. Nucleation of SiO2-CaO-Al2O3 Slag in Oxidative Ladle Refining of Metallurgical Grade Silicon. Metallurgical and Materials Transactions B 2021 ;Volum 52. s. 1392-1412 https://doi.org/10.1007/s11663-021-02132-7 This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)en_US
dc.relation.haspartPaper 2: E. L. Bjørnstad and G. M. Tranell: Investigation of the Surface Oxide Layer of Metallurgical Grade Silicon Extended abstract for the 11th International Conference on Molten Slags, Fluxes and Salts 2021.en_US
dc.relation.haspartPaper 3: Bjørnstad, Erlend Lunnan; Tranell, Gabriella. Mass Transfer of Al and Ca Between Silicon and Synthetic SiO2-CaO-Al2O3 Slags. I: Materials Processing Fundamentals 2017. Springer 2017 ISBN 978-3-319-51579-3. s. 85-96 https://doi.org/10.1007/978-3-319-51580-9_9en_US
dc.relation.haspartPaper 4: E. L. Bjørnstad, G. Solbakk, Ø. Mosevoll, and G. M. Tranell: The Effect of Calcium Alloy Content on the Mass Transfer of Boron Between Silicon and SiO2-CaO slag Extended abstract for the 11th International Conference on Molten Slags, Fluxes and Salts 2021.en_US
dc.relation.haspartPaper 5: E. L. Bjørnstad, I.-H. Jung, M.-A. Van Ende, and G. M. Tranell: Oxidative Refining of Metallurgical Grade Silicon: Lab-scale Measurements and Description of Ca and Al Mass Transferen_US
dc.relation.haspartPaper 6: Bjørnstad, Erlend Lunnan; Tranell, Gabriella. Statistical Model for Locating Micro Slag Droplets in MG-Si Production. SILICON FOR THE CHEMICAL AND SOLAR INDUSTRY XIVen_US
dc.titleOxidative Ladle Refining of Metallurgical Grade Silicon: Refining of Ca and Al Impuritiesen_US
dc.typeDoctoral thesisen_US
dc.subject.nsiVDP::Technology: 500::Materials science and engineering: 520en_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel