Vis enkel innførsel

dc.contributor.authorHarvey, Lynn V.
dc.contributor.authorDatta-Barua, Seebany
dc.contributor.authorPedatella, Nicholas M.
dc.contributor.authorWang, Ningchao
dc.contributor.authorRandall, Cora E.
dc.contributor.authorSiskind, David E.
dc.contributor.authorvan Caspel, Willem Elias
dc.date.accessioned2021-06-01T07:40:52Z
dc.date.available2021-06-01T07:40:52Z
dc.date.created2021-05-31T16:24:24Z
dc.date.issued2021
dc.identifier.citationJournal of Geophysical Research (JGR): Atmospheres. 2021, 126 (11), .en_US
dc.identifier.issn2169-897X
dc.identifier.urihttps://hdl.handle.net/11250/2757141
dc.description.abstractThe energetic particle precipitation (EPP) indirect effect (IE) refers to the downward transport of reactive odd nitrogen (NOx = NO + NO2) produced by EPP (EPP-NOx) from the polar winter mesosphere and lower thermosphere to the stratosphere where it can destroy ozone. Previous studies of the EPP IE examined NOx descent averaged over the polar region, but the work presented here considers longitudinal variations. We report that the January 2009 split Arctic vortex in the stratosphere left an imprint on the distribution of NO near the mesopause, and that the magnitude of EPP-NOx descent in the upper mesosphere depends strongly on the planetary wave (PW) phase. We focus on an 11-day case study in late January immediately following the 2009 sudden stratospheric warming during which regional-scale Lagrangian coherent structures (LCSs) formed atop the strengthening mesospheric vortex. The LCSs emerged over the north Atlantic in the vicinity of the trough of a 10-day westward traveling planetary wave. Over the next week, the LCSs acted to confine NO-rich air to polar latitudes, effectively prolonging its lifetime as it descended into the top of the polar vortex. Both a whole atmosphere data assimilation model and satellite observations show that the PW trough remained coincident in space and time with the NO-rich air as both migrated westward over the Canadian Arctic. Estimates of descent rates indicate five times stronger descent inside the PW trough compared to other longitudes. This case serves to set the stage for future climatological analysis of NO transport via LCSs.en_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Union, AGUen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleTransport of Nitric Oxide Via Lagrangian Coherent Structures Into the Top of the Polar Vortexen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume126en_US
dc.source.journalJournal of Geophysical Research (JGR): Atmospheresen_US
dc.source.issue11en_US
dc.identifier.doihttps://doi.org/10.1029/2020JD034523
dc.identifier.cristin1912907
dc.description.localcode© 2021. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_US
dc.source.articlenumbere2020JD034523en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal