Vis enkel innførsel

dc.contributor.authorGuttu, Sigmund
dc.contributor.authorOrsolini, Yvan J.
dc.contributor.authorStordal, Frode
dc.contributor.authorOtterå, Odd Helge
dc.contributor.authorOmrani, Nour-Eddine
dc.date.accessioned2021-05-26T08:51:36Z
dc.date.available2021-05-26T08:51:36Z
dc.date.created2021-05-25T13:35:31Z
dc.date.issued2021
dc.identifier.citationEnvironmental Research Letters. 2021, 16 (6), .en_US
dc.identifier.issn1748-9326
dc.identifier.urihttps://hdl.handle.net/11250/2756397
dc.description.abstractThe stratospheric, tropospheric and surface impacts from the 11 year ultraviolet solar spectral irradiance (SSI) variability have been extensively studied using climate models and observations. Here, we demonstrate using idealized model simulations that the Pacific Decadal Oscillation (PDO), which has been shown to impact the tropospheric and stratospheric circulation from sub-decadal to multi-decadal timescales, strongly modulates the solar-induced atmospheric response. To this end, we use a high-top version of the coupled ocean–atmosphere Norwegian Climate Prediction Model forced by the SSI dataset recommended for Coupled Model Intercomparison Project 6. We perform a 24-member ensemble experiment over the solar cycle 23 in an idealized framework. To assess the PDO modulation of the solar signal, we divide the model data into the two PDO phases, PDO+ and PDO−, for each solar (maximum or minimum) phase. By compositing and combining the four categories, we hence determine the component of the solar signal that is independent of the PDO and the modulation of the solar signal by the PDO, along with the solar signal in each PDO phase. Reciprocally, we determine the PDO effect in each solar phase. Our results show that the intensification of the polar vortex under solar maximum is much stronger in the PDO− phase. This signal is transferred into the troposphere, where we find a correspondingly stronger polar jet and weaker Aleutian Low. We further show that the amplification of the solar signal by the PDO− phase is driven by anomalous meridional advection of solar-induced temperature anomalies over northern North America and the North Pacific, which contributes to a decreased meridional eddy heat flux and hence to a decreased vertical planetary wave flux into the stratosphere.en_US
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber10en_US
dc.source.volume16en_US
dc.source.journalEnvironmental Research Lettersen_US
dc.source.issue6en_US
dc.identifier.doi10.1088/1748-9326/abfe8b
dc.identifier.cristin1911715
dc.description.localcode© 2021 The Author(s). Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license.en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal