Vis enkel innførsel

dc.contributor.authorLi, Yang
dc.contributor.authorPallaspuro, Sakari
dc.contributor.authorRen, Xiaobo
dc.contributor.authorHe, Jianying
dc.contributor.authorKömi, Jukka
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2021-04-06T09:48:33Z
dc.date.available2021-04-06T09:48:33Z
dc.date.created2020-11-17T10:29:16Z
dc.date.issued2020
dc.identifier.issn0167-6636
dc.identifier.urihttps://hdl.handle.net/11250/2736332
dc.description.abstractThe conventional micromechanical approaches today are still not able to properly predict the ductile-to-brittle transition (DBT) of steels because of their inability to consider the co-operating ductile fracture and cleavage mechanisms in the transition region, and simultaneously to incorporate the inherent complexity of microstructures. In this study, a complete methodology with coupled cellular automata finite element method (CAFE) and multi-barrier microcrack propagation models is presented to advance the prediction of DBT. The methodology contains three key elements: (i) a multiscale CAFE modelling approach to realize the competition between ductile damage and cleavage fracture and embrace the probabilistic nature of microstructures, (ii) a continuum approach to estimate the effective surface energy for a microcrack to penetrate over particle/matrix interface, and (iii) a method to calculate the effective surface energy for the microcrack to propagate across grain boundaries. The prediction of DBT therefore needs only (1) the stress-strain curves tested at different temperatures, (2) the activation energy for DBT, (3) the ratio between the size of cleavage facets and cleavage-initiating defects, and (4) key statistical distributions of the given microstructures. The proposed methodology can accurately reproduce the experimental DBT curve of a low carbon ultrahigh-strength steel.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA multi-barrier model assisted CAFE method for predicting ductile-to-brittle transition with application to a low-carbon ultrahigh-strength steelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.journalMechanics of materials (Print)en_US
dc.identifier.doihttps://doi.org/10.1016/j.mechmat.2020.103669
dc.identifier.cristin1848675
dc.relation.projectNorges forskningsråd: 228513en_US
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal