Vis enkel innførsel

dc.contributor.authorDuyar, Melis S.
dc.contributor.authorGallo, Alessandro
dc.contributor.authorRegli, Samuel K.
dc.contributor.authorSnider, Jonathan L.
dc.contributor.authorSingh, Joseph A.
dc.contributor.authorValle, Eduardo
dc.contributor.authorMcEnaney, Joshua
dc.contributor.authorBent, Stacey F.
dc.contributor.authorRønning, Magnus
dc.contributor.authorJaramillo, Thomas F
dc.date.accessioned2021-03-01T12:11:00Z
dc.date.available2021-03-01T12:11:00Z
dc.date.created2021-02-26T15:37:00Z
dc.date.issued2021
dc.identifier.citationCatalysts. 2021, 11 143-?.en_US
dc.identifier.issn2073-4344
dc.identifier.urihttps://hdl.handle.net/11250/2730918
dc.description.abstractMolybdenum phosphide (MoP) catalyzes the hydrogenation of CO, CO2 , and their mixtures to methanol, and it is investigated as a high-activity catalyst that overcomes deactivation issues (e.g., formate poisoning) faced by conventional transition metal catalysts. MoP as a new catalyst for hydrogenating CO2 to methanol is particularly appealing for the use of CO2 as chemical feedstock. Herein, we use a colloidal synthesis technique that connects the presence of MoP to the formation of methanol from CO2 , regardless of the support being used. By conducting a systematic support study, we see that zirconia (ZrO2 ) has the striking ability to shift the selectivity towards methanol by increasing the rate of methanol conversion by two orders of magnitude compared to other supports, at a CO2 conversion of 1.4% and methanol selectivity of 55.4%. In situ X-ray Absorption Spectroscopy (XAS) and in situ X-ray Diffraction (XRD) indicate that under reaction conditions the catalyst is pure MoP in a partially crystalline phase. Results from Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Temperature Programmed Surface Reaction (DRIFTSTPSR) point towards a highly reactive monodentate formate intermediate stabilized by the strong interaction of MoP and ZrO2 . This study definitively shows that the presence of a MoP phase leads to methanol formation from CO2 , regardless of support and that the formate intermediate on MoP governs methanol formation rate.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleUnderstanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniquesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber143-?en_US
dc.source.volume11en_US
dc.source.journalCatalystsen_US
dc.identifier.doihttps://doi.org/10.3390/catal11010143
dc.identifier.cristin1894122
dc.description.localcode: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal