Vis enkel innførsel

dc.contributor.authorWan, Di
dc.contributor.authorMa, Yan
dc.contributor.authorSun, Binhan
dc.contributor.authorRazavi, Seyed Mohammad Javad
dc.contributor.authorWang, Dong
dc.contributor.authorLu, Xu
dc.contributor.authorSong, Wenwen
dc.date.accessioned2021-02-22T08:06:45Z
dc.date.available2021-02-22T08:06:45Z
dc.date.created2020-12-21T14:35:18Z
dc.date.issued2021
dc.identifier.citationJournal of Materials Science & Technology. 2021, 85 30-43.en_US
dc.identifier.issn1005-0302
dc.identifier.urihttps://hdl.handle.net/11250/2729349
dc.description.abstractFatigue crack growth (FCG) tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures, resulting in different austenite () to ferrite () phase fractions and different (meta-)stabilities. Novel in-situ hydrogen plasma charging was combined with in-situ cyclic loading in an environmental scanning electron microscope (ESEM). The in-situ hydrogen plasma charging increased the fatigue crack growth rate (FCGR) by up to two times in comparison with the reference tests in vacuum. Fractographic investigations showed a brittle-like crack growth or boundary cracking manner in the hydrogen environment while a ductile transgranular manner in vacuum. For both materials, the plastic deformation zone showed a reduced size along the hydrogen-influenced fracture path in comparison with that in vacuum. The difference in the hydrogen-assisted FCG of the medium-Mn steel with different microstructures was explained in terms of phase fraction, phase stability, yielding strength and hydrogen distribution. This refined study can help to understand the FCG mechanism without or with hydrogen under in-situ hydrogen charging conditions and can provide some insights from the applications point of viewen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEvaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscopeen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber30-43en_US
dc.source.volume85en_US
dc.source.journalJournal of Materials Science & Technologyen_US
dc.identifier.doi10.1016/j.jmst.2020.12.069
dc.identifier.cristin1862412
dc.description.localcode© 2021 Published by Elsevier Ltd on behalf of The editoral office of Journal of Material Science & Technology. This is an open access article under the CC BY license 4.0en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal