Vis enkel innførsel

dc.contributor.authorOdoulami, Romaric C.
dc.contributor.authorNew, Mark
dc.contributor.authorWolski, Piotr
dc.contributor.authorGuillemet, Gregory
dc.contributor.authorPinto, Izidine
dc.contributor.authorLennard, Christopher
dc.contributor.authorMuri, Helene
dc.contributor.authorTilmes, Simone
dc.date.accessioned2020-11-24T08:41:31Z
dc.date.available2020-11-24T08:41:31Z
dc.date.created2020-11-23T12:31:11Z
dc.date.issued2020
dc.identifier.citationEnvironmental Research Letters. 2020, 15 (12), 124007-?.en_US
dc.identifier.issn1748-9326
dc.identifier.urihttps://hdl.handle.net/11250/2689221
dc.description.abstractAnthropogenic forcing of the climate is estimated to have increased the likelihood of the 2015–2017 Western Cape drought, also called 'Day Zero' drought, by a factor of three, with a projected additional threefold increase of risk in a world with 2 °C warming. Here, we assess the potential for geoengineering using stratospheric aerosols injection (SAI) to offset the risk of 'Day Zero' level droughts in a high emission future climate using climate model simulations from the Stratospheric Aerosol Geoengineering Large Ensemble Project. Our findings suggest that keeping the global mean temperature at 2020 levels through SAI would offset the projected end century risk of 'Day Zero' level droughts by approximately 90%, keeping the risk of such droughts similar to today's level. Precipitation is maintained at present-day levels in the simulations analysed here, because SAI (i) keeps westerlies near the South Western Cape in the future, as in the present-day, and (ii) induces the reduction or reversal of the upward trend in southern annular mode. These results are, however, specific to the SAI design considered here because using different model, different SAI deployment experiments, or analysing a different location might lead to different conclusions.en_US
dc.language.isoengen_US
dc.publisherInstitute of Physics, IOP Scienceen_US
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1748-9326/abbf13
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectClimate changeen_US
dc.subjectKlimaendringeren_US
dc.subjectTørkeen_US
dc.subjectDroughten_US
dc.subjectKlimamodelleren_US
dc.subjectClimate modelsen_US
dc.titleStratospheric Aerosol Geoengineering could lower future risk of 'Day Zero' level droughts in Cape Townen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.subject.nsiVDP::Meteorologi: 453en_US
dc.subject.nsiVDP::Meteorology: 453en_US
dc.source.pagenumber124007-?en_US
dc.source.volume15en_US
dc.source.journalEnvironmental Research Lettersen_US
dc.source.issue12en_US
dc.identifier.doi10.1088/1748-9326/abbf13
dc.identifier.cristin1851004
dc.description.localcodeOriginal content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal