• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting bending moments with machine learning

Celledoni, Elena; Gustad, Halvor Snersrud; Kopylov, Nikita; Sundklakk, Henrik Sperre
Peer reviewed, Journal article
Published version
View/Open
Celledoni (Locked)
URI
https://hdl.handle.net/11250/2659999
Date
2019
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2664]
  • Publikasjoner fra CRIStin - NTNU [41778]
Original version
10.1007/978-3-030-26980-7_19
Abstract
We investigate the possibility of predicting the bending moment of slender structures based on a limited number of deflection measurements. These predictions can help to estimate the wear and tear of the structures. We compare linear regression and a recurrent neural network on numerically simulated Euler–Bernoulli beam and drilling riser.
Publisher
Springer
Journal
Lecture Notes in Computer Science (LNCS)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit