Vis enkel innførsel

dc.contributor.authorRauter, Michael Tobias
dc.contributor.authorGalteland, Olav
dc.contributor.authorErdos, Mate
dc.contributor.authorMoultos, Othonas A.
dc.contributor.authorVlugt, Thijs J.H.
dc.contributor.authorSchnell, Sondre Kvalvåg
dc.contributor.authorBedeaux, Dick
dc.contributor.authorKjelstrup, Signe
dc.date.accessioned2020-05-18T12:35:06Z
dc.date.available2020-05-18T12:35:06Z
dc.date.created2020-05-15T11:15:45Z
dc.date.issued2020
dc.identifier.issn2079-4991
dc.identifier.urihttps://hdl.handle.net/11250/2654814
dc.description.abstractIt is known that thermodynamic properties of a system change upon confinement. To know how, is important for modelling of porous media. We propose to use Hill’s systematic thermodynamic analysis of confined systems to describe two-phase equilibrium in a nanopore. The integral pressure, as defined by the compression energy of a small volume, is then central. We show that the integral pressure is constant along a slit pore with a liquid and vapor in equilibrium, when Young and Young–Laplace’s laws apply. The integral pressure of a bulk fluid in a slit pore at mechanical equilibrium can be understood as the average tangential pressure inside the pore. The pressure at mechanical equilibrium, now named differential pressure, is the average of the trace of the mechanical pressure tensor divided by three as before. Using molecular dynamics simulations, we computed the integral and differential pressures, pˆ and p, respectively, analysing the data with a growing-core methodology. The value of the bulk pressure was confirmed by Gibbs ensemble Monte Carlo simulations. The pressure difference times the volume, V, is the subdivision potential of Hill, (p−pˆ)V=ϵ . The combined simulation results confirm that the integral pressure is constant along the pore, and that ϵ/V scales with the inverse pore width. This scaling law will be useful for prediction of thermodynamic properties of confined systems in more complicated geometries.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleTwo-Phase Equilibrium Conditions in Nanoporesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.journalNanomaterialsen_US
dc.identifier.doi10.3390/nano10040608
dc.identifier.cristin1811193
dc.description.localcode(C) 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal