• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel approach to rigid spheroid models in viscous flows using operator splitting methods

Tapley, Benjamin; Celledoni, Elena; Owren, Brynjulf; Andersson, Helge Ingolf
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Tapley.pdf (1.045Mb)
Permanent lenke
https://hdl.handle.net/11250/2654492
Utgivelsesdato
2019
Metadata
Vis full innførsel
Samlinger
  • Institutt for energi og prosessteknikk [2706]
  • Institutt for matematiske fag [1434]
  • Publikasjoner fra CRIStin - NTNU [20946]
Originalversjon
Numerical Algorithms. 2019, 81 (4), 1423-1441.   10.1007/s11075-019-00666-1
Sammendrag
Calculating cost-effective solutions to particle dynamics in viscous flows is an important problem in many areas of industry and nature. We implement a second-order symmetric splitting method on the governing equations for a rigid spheroidal particle model with torques, drag and gravity. The method splits the operators into a vector field that is conservative and one that takes into account the forces of the fluid. Error analysis and numerical tests are performed on perturbed and stiff particle-fluid systems. For the perturbed case, the splitting method greatly improves the solution accuracy, when compared to a conventional multistep method, and the global error behaves as (𝜀�ℎ2) for roughly equal computational cost. For stiff systems, we show that the splitting method retains stability in regimes where conventional methods blow up. In addition, we show through numerical experiments that the global order is reduced from (ℎ2/𝜀�) in the perturbed regime to (ℎ) in the stiff regime.
Utgiver
Springer
Tidsskrift
Numerical Algorithms

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit