Vis enkel innførsel

dc.contributor.authorHinterstein, Manuel
dc.contributor.authorLee, Kaiyang
dc.contributor.authorEsslinger, Sophia
dc.contributor.authorGlaum, Julia
dc.contributor.authorStuder, Andrew
dc.contributor.authorHoffman, Mark John
dc.contributor.authorHoffmann, Michael
dc.date.accessioned2020-04-17T13:40:38Z
dc.date.available2020-04-17T13:40:38Z
dc.date.created2019-07-16T18:14:44Z
dc.date.issued2019
dc.identifier.citationPhysical review B (PRB). 2019, 99 (17), .en_US
dc.identifier.issn2469-9950
dc.identifier.urihttps://hdl.handle.net/11250/2651556
dc.description.abstractNeutron powder diffraction was used in operando to determine the macroscopic strain and piezoelectric coefficient as a function of applied electric field in a technically relevant actuator material. We were able to individually investigate the two coexisting phases in the material and reveal the origin of maximized strain at phase boundaries. Insight into the strain mechanisms gives evidence that, on average, the classic inverse piezoelectric effect does not apply for polycrystalline materials.en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.titleDetermining fundamental properties from diffraction: Electric field induced strain and piezoelectric coefficienten_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber6en_US
dc.source.volume99en_US
dc.source.journalPhysical review B (PRB)en_US
dc.source.issue17en_US
dc.identifier.doi10.1103/PhysRevB.99.174107
dc.identifier.cristin1711718
dc.description.localcode© American Physical Society 2019.en_US
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel