Show simple item record

dc.contributor.authorSimensen, Haakon Thømt
dc.contributor.authorKamra, Akashdeep
dc.contributor.authorTroncoso, Roberto
dc.contributor.authorBrataas, Arne
dc.date.accessioned2020-04-01T07:25:26Z
dc.date.available2020-04-01T07:25:26Z
dc.date.created2020-01-09T20:41:24Z
dc.date.issued2020
dc.identifier.issn2469-9950
dc.identifier.urihttps://hdl.handle.net/11250/2649780
dc.description.abstractGilbert damping is a key property governing magnetization dynamics in ordered magnets. We present a theoretical study of intrinsic Gilbert damping induced by magnon decay in antiferromagnetic metals through s−d exchange interaction. Our theory delineates the qualitative features of damping in metallic antiferromagnets owing to their bipartite nature. It provides analytic expressions for the damping parameters yielding values consistent with recent first-principles calculations. Magnon-induced intraband electron scattering is found to predominantly cause magnetization damping, whereas the Néel field is found to be damped via disorder. Depending on the conduction electron band structure, we predict that magnon-induced interband electron scattering around band crossings may be exploited to engineer a strong Néel field dampingen_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.titleMagnon decay theory of Gilbert damping in metallic antiferromagnetsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume101en_US
dc.source.journalPhysical review B (PRB)en_US
dc.source.issue020403en_US
dc.identifier.doi10.1103/PhysRevB.101.020403
dc.identifier.cristin1769859
dc.description.localcode©2020 American Physical Societyen_US
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record