Show simple item record

dc.contributor.authorBokolo, Anthony Junior
dc.contributor.authorPetersen, Sobah Abbas
dc.contributor.authorAhlers, Dirk
dc.contributor.authorKrogstie, John
dc.identifier.citationInternational Journal of Energy Sector Management. 2020,en_US
dc.description.abstractElectric mobility as a service (eMaaS) is suggested as a possible solution to ease transportation and lessen environmental issues by providing a collaborative transport sharing infrastructure that is based on electric vehicles (EVs) such as electric cars, electric bicycles and so on. Accordingly, this study aims to propose a multi-tier architecture to support the collection, processing, analytics and usage of mobility data in providing eMaaS within smart cities. The architecture uses application programming interfaces to enable interoperability between different infrastructures required for eMaaS and allow multiple partners to exchange and share data for making decision regarding electric mobility services. Design/methodology/approach Design science methodology based on a case study by interview was used to collect data from an infrastructure company in Norway to verify the applicability of the proposed multi-tier architecture. Findings Findings suggest that the architecture offers an approach for collecting, aggregating, processing and provisioning of data originating from sources to improve electric mobility in smart cities. More importantly, findings from this study provide guidance for municipalities and policymakers in improving electric mobility services. Moreover, the author’s findings provide a practical data-driven mobility use case that can be used by transport companies in deploying eMaaS in smart cities. Research limitations/implications Data was collected from a single company in Norway, hence, it is required to further verify the architecture with data collected from other companies. Practical implications eMaaS operates on heterogeneous data, which are generated from EVs and used by citizens and stakeholders such as city administration, municipality transport providers, charging station providers and so on. Therefore, the proposed architecture enables the sharing and usage of generated data as openly available data to be used in creating value-added services to improve citizen’s quality of life and viability of businesses. Social implications This study proposes the deployment of electric mobility to address increased usage of vehicles, which contributes to pollution of the environment that has a serious effect on citizen’s quality of life. Originality/value This study proposes a multi-tier architecture that stores, processes, analyze and provides data and related services to improve electric mobility within smart cities. The multi-tier architecture aims to support and increase eMaaS operation of EVs toward improving transportation services for city transport operators and citizens for sustainable transport and mobility system.en_US
dc.publisherEmerald Publishingen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.titleBig Data Driven Multi-Tier Architecture for Electric Mobility as a Service in Smart Cities: A Design Science Approachen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.source.journalInternational Journal of Energy Sector Managementen_US
dc.description.localcode© 2020. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: CC-BY-NCen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse-Ikkekommersiell 4.0 Internasjonal