• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic and environmental effects on the scaling of metabolic rate with body size

Fossen, Erlend Ignacio Fleck; Pelabon, Christophe; Einum, Sigurd
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Fossen (990.2Kb)
URI
https://hdl.handle.net/11250/2648410
Date
2019
Metadata
Show full item record
Collections
  • Institutt for biologi [1655]
  • Publikasjoner fra CRIStin - NTNU [19898]
Original version
Journal of Experimental Biology. 2019, 222 1-7.   10.1242/jeb.193243
Abstract
Metabolic rate (MR) often scales with body mass (BM) following a power function of the form MR=aBMb, where log(a) is the allometric intercept and b is the allometric exponent (i.e. slope on a log–log scale). The variational properties of b have been debated, but very few studies have tested for genetic variance in b, and none have tested for a genotype-by-environment (G×E) interaction in b. Consequently, the short-term evolutionary potentials of both b and its phenotypic plasticity remain unknown. Using 10 clones of a population of Daphnia magna, we estimated the genetic variance in b and assessed whether a G×E interaction affected b. We measured MR on juveniles of different sizes reared and measured at three temperatures (17, 22 and 28°C). Overall, b decreased with increasing temperature. We found no evidence of genetic variance in b at any temperature, and thus no G×E interaction in b. However, we found a significant G×E interaction in size-specific MR. Using simulations, we show how this G×E interaction can generate genetic variation in the ontogenetic allometric slope of animals experiencing directional changes in temperature during growth. This suggests that b can evolve despite having limited genetic variation at constant temperatures.
Publisher
Company of Biologists
Journal
Journal of Experimental Biology

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit