Vis enkel innførsel

dc.contributor.authorRaka, Yash Dharmendra
dc.contributor.authorKaroliussen, Håvard
dc.contributor.authorLien, Kristian Myklebust
dc.contributor.authorBurheim, Odne Stokke
dc.date.accessioned2020-02-18T10:08:55Z
dc.date.available2020-02-18T10:08:55Z
dc.date.created2019-08-07T13:23:32Z
dc.date.issued2019
dc.identifier.citationInternational journal of hydrogen energy. 2020, 45 (2)nb_NO
dc.identifier.issn0360-3199
dc.identifier.urihttp://hdl.handle.net/11250/2642207
dc.description.abstractOngoing and emerging renewable energy technologies mainly produce electric energy and intermittent power. As the energy economy relies on banking energy, there is a rising need for chemically stored energy. We propose heat driven reverse electrodialysis (RED) technology with ammonium bicarbonate (AmB) as salt for producing hydrogen. The study provides the authors’ perspective on the commercial feasibility of AmB RED for low grade waste heat (333 K–413 K) to electricity conversion system. This is to our best of knowledge the only existing study to evaluate levelized cost of energy of a RED system for hydrogen production. The economic assessment includes a parametric study, and a scenario analysis of AmB RED system for hydrogen production. The impact of various parameters including membrane cost, membrane lifetime, cost of heating, inter-membrane distance and residence time are studied. The results from the economic study suggests, RED system with membrane cost less than 2.86 €/m2, membrane life more than 7 years and a production rate of 1.19 mol/m2/h or more are necessary for RED to be economically competitive with the current renewable technologies for hydrogen production. Further, salt solubility, residence time and inter-membrane distance were found to have impact on levelized cost of hydrogen, LCH. In the present state, use of ammonium bicarbonate in RED system for hydrogen production is uneconomical. This may be attributed to high membrane cost, low (0.72 mol/m2/h) hydrogen production rate and large (1,281,436 m2) membrane area requirements. There are three scenarios presented the present scenario, market scenario and future scenario. From the scenario analysis, it is clear that membrane cost and membrane life in present scenario controls the levelized cost of hydrogen. In market scenario and future scenario the hydrogen production rate (which depends on membrane properties, inter-membrane distance etc.), the cost of regeneration system and the cost of heating controls the levelized cost of hydrogen. For a thermally driven RED system to be economically feasible, the membrane cost not more than 20 €/m2; hydrogen production rate of 3.7 mol/m2/h or higher and cost of heating not more than 0.03 €/kWh for low grade waste heat to hydrogen production.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleOpportunities and challenges for thermally driven hydrogen production using reverse electrodialysis systemnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume45nb_NO
dc.source.journalInternational journal of hydrogen energynb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.1016/j.ijhydene.2019.05.126
dc.identifier.cristin1714626
dc.description.localcodeOpen Access CC-BYnb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal