• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combined kinematic and dynamic control of an underwater swimming manipulator

Borlaug, Ida-Louise Garmann; Sverdrup-Thygeson, Jørgen; Pettersen, Kristin Ytterstad; Gravdahl, Jan Tommy
Journal article, Peer reviewed
Published version
Thumbnail
Åpne
Borlaug.pdf (601.7Kb)
Permanent lenke
http://hdl.handle.net/11250/2638145
Utgivelsesdato
2019
Metadata
Vis full innførsel
Samlinger
  • Institutt for teknisk kybernetikk [2858]
  • Publikasjoner fra CRIStin - NTNU [26671]
Originalversjon
IFAC-PapersOnLine. 2019, 52 (21), 8-13.   10.1016/j.ifacol.2019.12.275
Sammendrag
An underwater swimming manipulator (USM) is a long and slender underwater vehicle composed of multiple links that are connected by motorized joints and equipped with thrusters. The USM belongs to the class of underwater vehicle-manipulator systems (UVMS), and the main task is to carry out autonomous inspections and light intervention operations on subsea installations. To achieve this, it is important to develop a control system that maintains the stability of the USM, while at the same time utilizes the kinematic redundancy of this highly flexible underwater vehicle. In this paper, we propose a combined kinematic and dynamic control approach for the USM. The approach uses the singularity robust multiple task priority (SRMTP) framework to generate a velocity reference and combines this with a dynamic velocity controller based on sliding mode control (SMC). This novel approach allows us to analyze the stability properties of the kinematic and dynamic subsystems together, in the presence of model uncertainty, while still retaining the possibility to solve multiple tasks simultaneously. We show that the multiple set-point regulation tasks will converge asymptotically to zero without the strict requirement that the velocities are perfectly controlled. This novel approach then avoids the assumption of perfect dynamic control that is common in kinematic stability analyses for robot manipulators. We demonstrate the applicability of the proposed approach through a simulation study of a USM carrying out three simultaneous tasks. The results show that all the regulation tasks converge to their respective set-points. The proposed control approach is applicable to vehicle-manipulator systems in general, and for any combination of regulation tasks.
Utgiver
International Federation of Automatic Control (IFAC)
Tidsskrift
IFAC-PapersOnLine

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit