dc.contributor.author | Benning, Martin | |
dc.contributor.author | Celledoni, Elena | |
dc.contributor.author | Ehrhardt, Matthias J. | |
dc.contributor.author | Owren, Brynjulf | |
dc.contributor.author | Schönlieb, Carola-Bibiane | |
dc.date.accessioned | 2020-01-23T12:24:52Z | |
dc.date.available | 2020-01-23T12:24:52Z | |
dc.date.created | 2019-05-15T11:21:13Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 2158-2505 | |
dc.identifier.uri | http://hdl.handle.net/11250/2637641 | |
dc.description.abstract | We consider recent work of [11] and [6], where deep learning neuralnetworks have been interpreted as discretisations of an optimal control problemsubject to an ordinary differential equation constraint. We review the first orderconditions for optimality, and the conditions ensuring optimality after discretiza-tion. This leads to a class of algorithms for solving the discrete optimal controlproblem which guarantee that the corresponding discrete necessary conditions foroptimality are fulfilled. We discuss two different deep learning algorithms and makea preliminary analysis of the ability of the algorithms to generalise. | nb_NO |
dc.description.abstract | Deep learning as optimal control problems: models and numerical methods | nb_NO |
dc.language.iso | eng | nb_NO |
dc.publisher | American Institute of Mathematical Sciences (AIMS) | nb_NO |
dc.relation.uri | https://arxiv.org/pdf/1904.05657.pdf | |
dc.title | Deep learning as optimal control problems: models and numerical methods | nb_NO |
dc.type | Journal article | nb_NO |
dc.type | Peer reviewed | nb_NO |
dc.description.version | publishedVersion | nb_NO |
dc.source.journal | Journal of Computational Dynamics | nb_NO |
dc.identifier.doi | 10.3934/jcd.2019009 | |
dc.identifier.cristin | 1697999 | |
dc.relation.project | EC/H2020/CHiPS | nb_NO |
dc.relation.project | Norges forskningsråd: 231632 | nb_NO |
dc.relation.project | EC/H2020/CHIPS | nb_NO |
dc.description.localcode | This article will not be available due to copyright restrictions (c) 2019 by American Institute of Mathematical Sciences | nb_NO |
cristin.unitcode | 194,63,15,0 | |
cristin.unitname | Institutt for matematiske fag | |
cristin.ispublished | true | |
cristin.fulltext | original | |
cristin.qualitycode | 1 | |