Vis enkel innførsel

dc.contributor.authorAhmadi, Arash
dc.contributor.authorTill, Katharina
dc.contributor.authorHafting, Yngve
dc.contributor.authorSchuttpelz, Mark
dc.contributor.authorBjørås, Magnar
dc.contributor.authorGlette, Kyrre
dc.contributor.authorTørresen, Jim
dc.contributor.authorRowe, Alexander D.
dc.contributor.authorDalhus, Bjørn
dc.date.accessioned2020-01-23T07:22:08Z
dc.date.available2020-01-23T07:22:08Z
dc.date.created2019-12-10T13:39:27Z
dc.date.issued2019
dc.identifier.citationScientific Reports. 2019, 9 (1), 1-12.nb_NO
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11250/2637541
dc.description.abstractA microfluidic laminar flow cell (LFC) forms an indispensable component in single-molecule experiments, enabling different substances to be delivered directly to the point under observation and thereby tightly controlling the biochemical environment immediately surrounding single molecules. Despite substantial progress in the production of such components, the process remains relatively inefficient, inaccurate and time-consuming. Here we address challenges and limitations in the routines, materials and the designs that have been commonly employed in the field, and introduce a new generation of LFCs designed for single-molecule experiments and assembled using additive manufacturing. We present single- and multi-channel, as well as reservoir-based LFCs produced by 3D printing to perform single-molecule experiments. Using these flow cells along with optical tweezers, we show compatibility with single-molecule experiments including the isolation and manipulation of single DNA molecules either attached to the surface of a coverslip or as freely movable DNA dumbbells, as well as direct observation of protein-DNA interactions. Using additive manufacturing to produce LFCs with versatility of design and ease of production allow experimentalists to optimize the flow cells to their biological experiments and provide considerable potential for performing multi-component single-molecule experiments.nb_NO
dc.language.isoengnb_NO
dc.publisherNature Researchnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAdditive manufacturing of laminar flow cells for single-molecule experimentsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-12nb_NO
dc.source.volume9nb_NO
dc.source.journalScientific Reportsnb_NO
dc.source.issue1nb_NO
dc.identifier.doi10.1038/s41598-019-53151-z
dc.identifier.cristin1758870
dc.relation.projectNorges forskningsråd: 281255nb_NO
dc.description.localcodeOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.nb_NO
cristin.unitcode194,65,15,0
cristin.unitnameInstitutt for klinisk og molekylær medisin
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal