Vis enkel innførsel

dc.contributor.authorBotello, Zulma L. Moreno
dc.contributor.authorMontenegro, Alejandra
dc.contributor.authorOsorio, Nicolas Grimaldos
dc.contributor.authorHuve, Marielle
dc.contributor.authorPirovano, Caroline
dc.contributor.authorSmåbråten, Didrik Rene
dc.contributor.authorSelbach, Sverre Magnus
dc.contributor.authorCaneiro, Alberto
dc.contributor.authorRoussel, Pascal
dc.contributor.authorGauthier, Gilles H.
dc.date.accessioned2020-01-21T13:22:32Z
dc.date.available2020-01-21T13:22:32Z
dc.date.created2019-09-06T13:31:59Z
dc.date.issued2019
dc.identifier.citationJournal of Materials Chemistry A. 2019, 7 (31), 18589-18602.nb_NO
dc.identifier.issn2050-7488
dc.identifier.urihttp://hdl.handle.net/11250/2637264
dc.description.abstractA thorough study of the Y1−xZrxMnO3+δ series is presented with the objective to use these materials as SOFC cathodes. These pure and Zr-doped yttrium manganites exhibit a layered hexagonal structure similar to a peculiar 5-fold bipyramidal coordination of manganese that makes them intrinsically different from the traditional cube-like perovskite with [MnO6] octahedra, creating the conditions conducive for oxygen uptake at a low temperature in the case of the layered manganite. Zr for Y doping enables the maintenance of oxygen excess such as interstitial oxygen atoms (Oi) located in the equatorial plane of the bi-pyramids. These over-stoichiometric interstitial oxygen sites are clearly evidenced by the maximum entropy method (MEM) applied to neutron diffraction data, and density functional theory (DFT) calculations are used to model the structural accommodation of Zr and excess oxygen. Mn reduction to Mn2+ is found to be energetically unfavourable, as proved both experimentally and by DFT calculations. Hence, zirconium is found to both stabilize the excess oxygen compared to pure YMnO3 and possibly provide an oxygen ion migration path with a lower energy barrier. The main consequence is a possible MIEC behaviour in Zr-doped YMnO3, as suggested by both the conductivity measurements and theoretical calculations. The initial EIS measurements are very promising and raise the series and its original structure to the rank of materials of interest for application as SOFC electrodes.nb_NO
dc.language.isoengnb_NO
dc.publisherRoyal Society of Chemistrynb_NO
dc.titlePure and Zr-doped YMnO3+δ as a YSZ-compatible SOFC cathode: a combined computational and experimental approachnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber18589-18602nb_NO
dc.source.volume7nb_NO
dc.source.journalJournal of Materials Chemistry Anb_NO
dc.source.issue31nb_NO
dc.identifier.doi10.1039/C9TA04912F
dc.identifier.cristin1722309
dc.relation.projectNotur/NorStore: ntnu243nb_NO
dc.relation.projectNotur/NorStore: NN9264Knb_NO
dc.relation.projectNorges forskningsråd: 231430nb_NO
dc.relation.projectNotur/NorStore: NTNU243nb_NO
dc.description.localcode© 2019. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: http://dx.doi.org/10.1039/C9TA04912Fnb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel