Vis enkel innførsel

dc.contributor.authorLunczer, Lukas
dc.contributor.authorLeubner, Philipp
dc.contributor.authorEndres, Martin
dc.contributor.authorMuller, Valentin L
dc.contributor.authorBrüne, Christoph
dc.contributor.authorBuhmann, Hartmut
dc.contributor.authorMolenkamp, Laurens W
dc.date.accessioned2020-01-15T14:08:38Z
dc.date.available2020-01-15T14:08:38Z
dc.date.created2019-08-29T11:12:55Z
dc.date.issued2019
dc.identifier.citationPhysical Review Letters. 2019, 123 (4), 047701-1-047701-5.nb_NO
dc.identifier.issn0031-9007
dc.identifier.urihttp://hdl.handle.net/11250/2636487
dc.description.abstractQuantum spin Hall edge channels hold great promise as dissipationless one-dimensional conductors.However, the ideal quantized conductance of2e2=his only found in very short channels-in contradictionwith the expected protection against backscattering of the topological insulator state. In this Letter we showthat enhancing the band gap does not improve quantization. When we instead alter the potential landscapeby charging trap states in the gate dielectric using gate training, we approach conductance quantization formacroscopically long channels. Effectively, the scattering length increases to175μm, more than 1 order ofmagnitude longer than in previous works for HgTe-based quantum wells. Our experiments show that thedistortion of the potential landscape by impurities, leading to puddle formation in the narrow gap material,is the major obstacle for observing undisturbed quantum spin Hall edge channel transportnb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Physical Societynb_NO
dc.titleApproaching Quantization in Macroscopic Quantum Spin Hall Devices through Gate Trainingnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber047701-1-047701-5nb_NO
dc.source.volume123nb_NO
dc.source.journalPhysical Review Lettersnb_NO
dc.source.issue4nb_NO
dc.identifier.doi10.1103/PhysRevLett.123.047701
dc.identifier.cristin1719771
dc.description.localcode© American Physical Society 2019. This is the authors accepted and refereed manuscript to the article. The final article is available at: [http://doi.org/10.1103/PhysRevLett.123.047701]nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel