dc.contributor.author | Giordano, Thierry | |
dc.contributor.author | Putnam, Ian F. | |
dc.contributor.author | Skau, Christian Fredrik | |
dc.date.accessioned | 2020-01-15T09:43:32Z | |
dc.date.available | 2020-01-15T09:43:32Z | |
dc.date.created | 2019-10-01T17:56:01Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Groups, Geometry, and Dynamics. 2019, 13 (3), 909-938. | nb_NO |
dc.identifier.issn | 1661-7207 | |
dc.identifier.uri | http://hdl.handle.net/11250/2636356 | |
dc.description.abstract | Cohomology for actions of free abelian groups on the Cantor set has (when endowed with an order structure) provided a complete invariant for orbit equivalence. In this paper, we study a particular class of actions of such groups called odometers (or profinite actions) and investigate their cohomology. We show that for a free, minimal Zd-odometer, the first cohomology group provides a complete invariant for the action up to conjugacy. This is in contrast with the situation for orbit equivalence where it is the cohomology in dimension d which provides the invariant. We also consider classification up to isomorphism and continuous orbit equivalence. | nb_NO |
dc.language.iso | eng | nb_NO |
dc.publisher | European Mathematical Society Publishing House | nb_NO |
dc.title | Zd-odometers and cohomology | nb_NO |
dc.type | Journal article | nb_NO |
dc.type | Peer reviewed | nb_NO |
dc.description.version | acceptedVersion | nb_NO |
dc.source.pagenumber | 909-938 | nb_NO |
dc.source.volume | 13 | nb_NO |
dc.source.journal | Groups, Geometry, and Dynamics | nb_NO |
dc.source.issue | 3 | nb_NO |
dc.identifier.doi | 10.4171/GGD/509 | |
dc.identifier.cristin | 1732703 | |
dc.description.localcode | © 2019. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: http://dx.doi.org/10.4171/GGD/509 | nb_NO |
cristin.unitcode | 194,63,15,0 | |
cristin.unitname | Institutt for matematiske fag | |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |