Show simple item record

dc.contributor.authorGiordano, Thierry
dc.contributor.authorPutnam, Ian F.
dc.contributor.authorSkau, Christian Fredrik
dc.date.accessioned2020-01-15T09:43:32Z
dc.date.available2020-01-15T09:43:32Z
dc.date.created2019-10-01T17:56:01Z
dc.date.issued2019
dc.identifier.citationGroups, Geometry, and Dynamics. 2019, 13 (3), 909-938.nb_NO
dc.identifier.issn1661-7207
dc.identifier.urihttp://hdl.handle.net/11250/2636356
dc.description.abstractCohomology for actions of free abelian groups on the Cantor set has (when endowed with an order structure) provided a complete invariant for orbit equivalence. In this paper, we study a particular class of actions of such groups called odometers (or profinite actions) and investigate their cohomology. We show that for a free, minimal Zd-odometer, the first cohomology group provides a complete invariant for the action up to conjugacy. This is in contrast with the situation for orbit equivalence where it is the cohomology in dimension d which provides the invariant. We also consider classification up to isomorphism and continuous orbit equivalence.nb_NO
dc.language.isoengnb_NO
dc.publisherEuropean Mathematical Society Publishing Housenb_NO
dc.titleZd-odometers and cohomologynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber909-938nb_NO
dc.source.volume13nb_NO
dc.source.journalGroups, Geometry, and Dynamicsnb_NO
dc.source.issue3nb_NO
dc.identifier.doi10.4171/GGD/509
dc.identifier.cristin1732703
dc.description.localcode© 2019. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: http://dx.doi.org/10.4171/GGD/509nb_NO
cristin.unitcode194,63,15,0
cristin.unitnameInstitutt for matematiske fag
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record