Vis enkel innførsel

dc.contributor.authorHelberg, Ragne M Lilleby
dc.contributor.authorDai, Zhongde
dc.contributor.authorAnsaloni, Luca
dc.contributor.authorDeng, Liyuan
dc.date.accessioned2020-01-14T08:36:19Z
dc.date.available2020-01-14T08:36:19Z
dc.date.created2019-10-31T17:34:12Z
dc.date.issued2019
dc.identifier.citationGreen Energy & Environment. 2019, 1-10.nb_NO
dc.identifier.issn2468-0257
dc.identifier.urihttp://hdl.handle.net/11250/2636077
dc.description.abstractCO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin films. In this study, the blends of hydrophilic polymers polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) were studied to find an optimal polymer matrix to host carriers in facilitated transport membranes for enhanced CO2 separation. It is found out that the optimized blend is 50/50 PVA/PVP by weight, which shows a significant increase in the water uptake (from 63 to 84%) at equilibrium state compared to the neat PVA. Polyethyleneimine (PEI) was employed to provide sample carriers to evaluate the synergistic effect of PVA and PVP on the CO2 separation performance. A thin film composite (TFC) membrane of the optimized blend (50/50 PVA/PVP with 50 wt% PEI) was fabricated on polysulfone (PSf) porous support. The fabrication of the TFC membranes is simple and low cost, and CO2 permeance of the optimized blend membrane is nearly doubled with the CO2/N2 selectivity remained unchanged, showing great potential for industrial applications of the resulted membranes.nb_NO
dc.language.isoengnb_NO
dc.publisherKIeAinb_NO
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2468025719301050?via%3Dihub
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performancenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-10nb_NO
dc.source.journalGreen Energy & Environmentnb_NO
dc.identifier.doi10.1016/j.gee.2019.10.001
dc.identifier.cristin1742987
dc.relation.projectNorges forskningsråd: 239172nb_NO
dc.description.localcode©2019, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communi-cations Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).nb_NO
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedfalse
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal