Vis enkel innførsel

dc.contributor.authorLeth-Espensen, Anna
dc.contributor.authorLi, Tian
dc.contributor.authorGlarborg, Peter
dc.contributor.authorLøvås, Terese
dc.contributor.authorJensen, Peter Arendt
dc.date.accessioned2020-01-10T11:38:27Z
dc.date.available2020-01-10T11:38:27Z
dc.date.created2019-12-24T20:45:51Z
dc.date.issued2020
dc.identifier.issn0016-2361
dc.identifier.urihttp://hdl.handle.net/11250/2635673
dc.description.abstractThis modeling study examines the effect of particle morphology on devolatilization of biomass particles at conditions relevant for suspension firing. A model, which can calculate devolatilization times and particle temperatures for both spherical and cylindrical particles of a wide size range is established, and modeling predictions are compared to experimental data from literature with good consistency. The model accounts for the influence of aspect ratio and allows for biomass particles to be modeled as cylinders; a more accurate representation than the classical spherical approach. If a spherical approach is desirable due to limitations in computational costs, it is found to be more accurate to retain the diameter of the cylindrical biomass particle in the calculations rather than to adjust the radius to create a sphere with the same volume as the original particle. An analysis of the relative effect on devolatilization time of relevant physical parameters for three particle sizes ( = 79 μm, 0.8 mm, and 3.1 mm) is presented, evaluating both kinetic and heat transfer limitations. In general, model results show that the time for full devolatilization varies with more than two orders of magnitude in the particle size range ( = 0.08–3 mm) relevant for suspension firing. For the relevant gas temperature ( = 1300–1900 K) and density ( = 400–1000 kg/m3) intervals, the devolatilization times approximately doubles within both interval ranges. Variations in moisture content primarily influence the time for onset of devolatilization, which may affect flame stability in suspension fired boilers.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleThe influence of size and morphology on devolatilization of biomass particlesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.journalFuelnb_NO
dc.identifier.doi10.1016/j.fuel.2019.116755
dc.identifier.cristin1763808
dc.description.localcode© 2019. This is the authors’ accepted and refereed manuscript to the article. Locked until 14.12.2021 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal