Vis enkel innførsel

dc.contributor.authorRobertson, Amy N.
dc.contributor.authorBachynski, Erin Elizabeth
dc.contributor.authorGueydon, Sebastien
dc.contributor.authorWendt, Fabian
dc.contributor.authorSchünemann, Paul
dc.date.accessioned2020-01-02T12:12:39Z
dc.date.available2020-01-02T12:12:39Z
dc.date.created2020-01-01T15:40:07Z
dc.date.issued2020
dc.identifier.issn0029-8018
dc.identifier.urihttp://hdl.handle.net/11250/2634597
dc.description.abstractQuantifying the uncertainty in experimental results is a critical step in properly validating numerical simulation tools for designing floating wind turbines; without a good understanding of the experimental uncertainties, it is impossible to determine if numerical simulation tools can capture the physics with acceptable accuracy. Recent validation studies suggest that the wave-induced, low-frequency surge and pitch motions of semisubmersible-type floating wind turbines are consistently underpredicted by numerical simulations, but it has not been possible to state whether or not this underprediction is within the level of experimental error. In the present work, previously assessed systematic uncertainty components in hydrodynamic tests of the OC5-DeepCwind semisubmersible are propagated to response metrics of interest using numerical simulation tools, and combined with the system's random uncertainty to obtain the total experimental uncertainty. The uncertainty in the low-frequency response metrics is found to be most sensitive to the system properties (e.g., mooring stiffness and center of gravity), and also the wave elevation. The results of the present study suggest that the underprediction of the low-frequency response behavior observed in previous validation studies is larger than the experimental uncertainty.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleTotal experimental uncertainty in hydrodynamic testing of a semisubmersible wind turbine, considering numerical propagation of systematic uncertaintynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.volume195nb_NO
dc.source.journalOcean Engineeringnb_NO
dc.identifier.doi10.1016/j.oceaneng.2019.106605
dc.identifier.cristin1764716
dc.relation.projectEU/731084nb_NO
dc.description.localcode© 2019. This is the authors’ accepted and refereed manuscript to the article. Locked until 14.12.2021 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal