• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bias away from the Null due to miscounted outcomes? A case study on the TORCH trial

Muff, Stefanie; Puhan, Milo A.; Held, Leonhard
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Muff (271.1Kb)
URI
http://hdl.handle.net/11250/2633473
Date
2018
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1761]
  • Publikasjoner fra CRIStin - NTNU [26591]
Original version
Statistical Methods in Medical Research. 2018, 27 3151-3166.   10.1177/0962280217694403
Abstract
Count outcomes occur in virtually all disciplines, such as medicine, epidemiology or biology, but they often contain error. Recently, it has been shown that self-reported numbers of exacerbations of Chronic Obstructive Pulmonary Disease patients can be considerably miscounted. Motivated by this result, we reanalysed data from the Towards a Revolution in Chronic Obstructive Pulmonary Disease Health trial, a large randomized controlled trial with the self-reported number of exacerbations of Chronic Obstructive Pulmonary Disease patients as outcome. To adjust for miscounting error in the response of Poisson and (zero-inflated) negative binomial models, we introduce novel, general methodology. The key idea is to formulate a zero-inflated negative binomial model to capture the error mechanism. This parametric approach automatically circumvents drawbacks of previously suggested methodology that treats miscounted outcomes in the misclassification framework. Prior information for the response error model parameters was elicited from validation data of an external study and adaptively weighted to account for potential prior-data conflict. The results of the Bayesian hierarchical modelling approach indicated that the treatment effect has been overestimated in the original study. However, closer inspection revealed that this unexpected result was an artefact of an unaccounted time dependency of the treatment effect.
Publisher
SAGE Publications
Journal
Statistical Methods in Medical Research

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit