Show simple item record

dc.contributor.authorGhosh, Tamal
dc.contributor.authorMartinsen, Kristian
dc.date.accessioned2019-11-20T10:24:54Z
dc.date.available2019-11-20T10:24:54Z
dc.date.created2019-10-02T09:47:19Z
dc.date.issued2019
dc.identifier.issn2215-0986
dc.identifier.urihttp://hdl.handle.net/11250/2629464
dc.description.abstractContemporary manufacturing processes are substantially complex due to the involvement of a sizable number of correlated process variables. Uncovering the correlations among these variables would be the most demanding task in this scenario, which require exclusive tools and techniques. Data-driven surrogateassisted optimization is an ideal modeling approach, which eliminates the necessity of resource driven mathematical or simulation paradigms for the manufacturing process optimization. In this paper, a data-driven evolutionary algorithm is introduced, which is based on the improved Non-dominated Sorting Genetic Algorithm (NSGA-III). For objective approximation, the Gaussian Kernel Regression is selected. The multi-response manufacturing process data are employed to train this model. The proposed data-driven approach is generic, which could be evaluated for any type of manufacturing process. In order to verify the proposed methodology, a comprehensive number of cases are considered from the past literature. The proposed data-driven NSGA-III is compared with the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and shown to attain improved solutions within the imposed boundary conditions. Both the algorithms are shown to perform well using statistical analysis. The obtained results could be utilized to improve the machining conditions and performances. The novelty of this research is twofold, first, the surrogate-assisted NSGA III is implemented and second, the proposed approach is adopted for the multi-response manufacturing process optimization.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleGeneralized approach for multi-response machining process optimization using machine learning and evolutionary algorithmsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.journalEngineering Science and Technology, an International Journal (JESTECH)nb_NO
dc.identifier.doi10.1016/j.jestch.2019.09.003
dc.identifier.cristin1732828
dc.description.localcode© 2019. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,94,0
cristin.unitnameInstitutt for vareproduksjon og byggteknikk
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal