Vis enkel innførsel

dc.contributor.authorHendraningrat, Luky
dc.contributor.authorTorsæter, Ole
dc.date.accessioned2019-11-08T08:47:06Z
dc.date.available2019-11-08T08:47:06Z
dc.date.created2014-06-10T20:14:20Z
dc.date.issued2015
dc.identifier.citationApplied Nanoscience. 2015, 5 (2), 181-199.nb_NO
dc.identifier.issn2190-5509
dc.identifier.urihttp://hdl.handle.net/11250/2627326
dc.description.abstractThis paper presents systematic studies of hydrophilic metal oxide nanoparticles (NPs) dispersed in brine intended to reveal their potential to enhance oil recovery (EOR) in various rock wettability systems. The stability in suspension (nanofluid) of the NPs has been identified as a key factor related to their use as an EOR agent. Experimental techniques have been developed for nanofluid stability using three coupled methods: direct visual observation, surface conductivity and particle size measurements. The use of a dispersant has been investigated and has been shown to successfully improve metal oxide nanofluid stability as a function of its concentration. The dispersant alters the nanofluid properties, i.e. surface conductivity, pH and particle size distribution. A two-phase coreflood experiment was conducted by injecting the stable nanofluids as a tertiary process (nano-EOR) through core plugs with various wettabilities ranging from water-wet to oil-wet. The combination of metal oxide nanofluid and dispersant improved the oil recovery to a greater extent than either silica-based nanofluid or dispersant alone in all wettability systems. The contact angle, interfacial tension (IFT) and effluent were also measured. It was observed that metal oxide-based nanofluids altered the quartz plates to become more water-wet, and the results are consistent with those of the coreflood experiment. The particle adsorption during the transport process was identified from effluent analysis. The presence of NPs and dispersant reduced the IFT, but its reduction is sufficient to yield significant additional oil recovery. Hence, wettability alteration plays a dominant role in the oil displacement mechanism using nano-EOR.nb_NO
dc.language.isoengnb_NO
dc.publisherSpringer Verlagnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMetal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systemsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber181-199nb_NO
dc.source.volume5nb_NO
dc.source.journalApplied Nanosciencenb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.1007/s13204-014-0305-6
dc.identifier.cristin1137375
dc.description.localcode© The Author(s) 2014 Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.nb_NO
cristin.unitcode194,64,90,0
cristin.unitnameInstitutt for geovitenskap og petroleum
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal