• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intrusion Detection in High-Speed Networks

Riegel, Martin; Walsø, Claes Lyth
Master thesis
Thumbnail
View/Open
347522_FULLTEXT01.pdf (3.242Mb)
347522_ATTACHMENT01.zip (7.920Mb)
347522_COVER01.pdf (47.52Kb)
URI
http://hdl.handle.net/11250/261706
Date
2007
Metadata
Show full item record
Collections
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi [2771]
Abstract
This thesis investigates methods for implementing an intrusion detection system (IDS) in a high-speed backbone network. The work presented in this report is run in cooperation with Kripos and Uninett. The popular IDS software, Snort, is deployed and tested in Uninett's backbone network. In addition, the monitoring API (MAPI) is considered as a possible IDS implementation in the same environment. The experiments conducted in this report make use of the programmable DAG card, which is a passive monitoring card deployed on several monitoring sensors in Uninett's backbone. As a limitation of the workload, this report only focuses on the detection of botnets. Botnets are networks consisting of infected computers, and are considered to be a significant threat on the Internet as of today. A total of seven experiments using Snort are presented. These experiments test 1) the impact the number of rules have on Snort, 2) the importance of good configuration, 3)the importance of using well written rules, 4) Snort's ability to run in an environment with minimum external traffic, 5) the impact the size of the processed packets have, 6) the impact the TCP protocol has on packet processing and 7) Snort's ability to run as a botnet detection system for a longer period of time. Based on the results from these experiments, it is concluded that Snort is able to run as a botnet detection system in a high-speed network. This report also discusses some strategies for handling high-speed network data and some future aspects. In addition, ideas for further work and research are given in the end of the report.
Publisher
Institutt for telematikk

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit