• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimised Deep Learning Features for Improved Melanoma Detection

Majtner, Tomas; Yildirim Yayilgan, Sule; Hardeberg, Jon Yngve
Journal article, Peer reviewed
Published version
Åpne
Majtner (Låst)
Permanent lenke
http://hdl.handle.net/11250/2616862
Utgivelsesdato
2018
Metadata
Vis full innførsel
Samlinger
  • Institutt for datateknologi og informatikk [3784]
  • Publikasjoner fra CRIStin - NTNU [19849]
Originalversjon
10.1007/s11042-018-6734-6
Sammendrag
In this article, we are addressing the question of effective usage of the feature set extracted from deep learning models pre-trained on ImageNet. Exploring this option will offer very fast and attractive alternative to transfer learning strategies. The traditional task of skin lesion recognition consists of several stages, where the automated system is typically trained on preprocessed images with known diagnosis, which allows classification of new samples to predefined categories. For this task, we are proposing here an improved melanoma detection method based on the combination of linear discriminant analysis (LDA) and the features extracted from the deep learning approach. We are examining the usage of the LDA approach on activation of the fully-connected layer of deep learning in order to increase the classification accuracy and at the same time to reduce the feature space dimensionality. We tested our method on five different classifiers and evaluated results using various metrics. The presented comparison demonstrates the very high effectiveness of the suggested feature reduction, which leads not only to the significant lowering of employed features but also to the increasing performance of all tested classifiers in almost all measured characteristics.
Utgiver
Springer Verlag
Tidsskrift
Multimedia tools and applications

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit