Vis enkel innførsel

dc.contributor.authorGullo, Paride
dc.date.accessioned2019-09-03T06:48:40Z
dc.date.available2019-09-03T06:48:40Z
dc.date.created2018-11-09T13:15:40Z
dc.date.issued2018
dc.identifier.citationEnergies. 2018, 11 (11), 1-26.nb_NO
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/11250/2612120
dc.description.abstractIn this work the thermodynamic performance of a transcritical R744 booster supermarket refrigeration system equipped with R290 dedicated mechanical subcooling (DMS) was exhaustively investigated with the aid of the advanced exergy analysis. The outcomes obtained suggested that improvement priority needs to be addressed to the manufacturing of more efficient high-stage (HS) compressors, followed by the enhancement of the gas cooler/condenser (GC), of the medium-temperature (MT) evaporators, of the R290 compressor, and of the low-temperature (LT) evaporators. These conclusions were different from those drawn by the application of the conventional exergy assessment. Additionally, it was found that GC can be enhanced mainly by reducing the irreversibilities owing to the simultaneous interaction among the components. The R290 compressor would also have significantly benefitted from the adoption of such measures, as half of its avoidable irreversibilities were exogenous. Unlike the aforementioned components, all the evaporators were improvable uniquely by decreasing their temperature difference. Finally, the approach temperature of GC and the outdoor temperature were found to have a noteworthy impact on the avoidable irreversibilities of the investigated solution.nb_NO
dc.language.isoengnb_NO
dc.publisherMDPInb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAdvanced Thermodynamic Analysis of a Transcritical R744 Booster Refrigerating Unit with Dedicated Mechanical Subcoolingnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-26nb_NO
dc.source.volume11nb_NO
dc.source.journalEnergiesnb_NO
dc.source.issue11nb_NO
dc.identifier.doi10.3390/en11113058
dc.identifier.cristin1628700
dc.description.localcode© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal