Vis enkel innførsel

dc.contributor.authorGao, Jinghui
dc.contributor.authorKe, Xiaoqin
dc.contributor.authorAcosta, Matias
dc.contributor.authorGlaum, Julia
dc.contributor.authorRen, Xiaobing
dc.date.accessioned2019-05-27T06:59:10Z
dc.date.available2019-05-27T06:59:10Z
dc.date.created2019-01-08T16:39:02Z
dc.date.issued2018
dc.identifier.citationMRS bulletin. 2018, 43 (8), 595-599.nb_NO
dc.identifier.issn0883-7694
dc.identifier.urihttp://hdl.handle.net/11250/2598853
dc.description.abstractBaTiO3-based lead-free piezoelectric materials have long been known as “a mediocre class of piezoelectric materials.” However, they have seen significant renewed interest in recent years ever since the discovery of high piezoelectricity in Ba(Zr, Ti)O3-(Ba, Ca)TiO3 as well as the related Ba(Sn, Ti)O3-(Ba, Ca)TiO3 and Ba(Hf, Ti)O3-(Ba, Ca)TiO3 systems. The unexpectedly high piezoelectricity in this class of BaTiO3 (BT)-based materials is still not well understood and has stimulated significant research activity. We present a concise discussion of the notions leading to high piezoelectricity in BaTiO3-based systems. In particular, the possible role of a multiphase-coexisting point is highlighted.nb_NO
dc.language.isoengnb_NO
dc.publisherCambridge University Press and Materials Research Societynb_NO
dc.titleHigh piezoelectricity by multiphase coexisting point: Barium titanate derivativesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber595-599nb_NO
dc.source.volume43nb_NO
dc.source.journalMRS bulletinnb_NO
dc.source.issue8nb_NO
dc.identifier.doi10.1557/mrs.2018.155
dc.identifier.cristin1652744
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article.nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel